GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 2015-2019  (33)
Publikationsart
Schlagwörter
Erscheinungszeitraum
Jahr
  • 1
    Publikationsdatum: 2019-06-03
    Beschreibung: The deep ocean below 200 m water depth is the least observed, but largest habitat on our planet by volume and area. Over 150 years of exploration has revealed that this dynamic system provides critical climate regulation, houses a wealth of energy, mineral, and biological resources, and represents a vast repository of biological diversity. A long history of deep-ocean exploration and observation led to the initial concept for the Deep-Ocean Observing Strategy (DOOS), under the auspices of the Global Ocean Observing System (GOOS). Here we discuss the scientific need for globally integrated deep-ocean observing, its status, and the key scientific questions and societal mandates driving observing requirements over the next decade. We consider the Essential Ocean Variables (EOVs) needed to address deep-ocean challenges within the physical, biogeochemical, and biological/ecosystem sciences according to the Framework for Ocean Observing (FOO), and map these onto scientific questions. Opportunities for new and expanded synergies among deep-ocean stakeholders are discussed, including academic-industry partnerships with the oil and gas, mining, cable and fishing industries, the ocean exploration and mapping community, and biodiversity conservation initiatives. Future deep-ocean observing will benefit from the greater integration across traditional disciplines and sectors, achieved through demonstration projects and facilitated reuse and repurposing of existing deep-sea data efforts. We highlight examples of existing and emerging deep-sea methods and technologies, noting key challenges associated with data volume, preservation, standardization, and accessibility. Emerging technologies relevant to deep-ocean sustainability and the blue economy include novel genomics approaches, imaging technologies, and ultra-deep hydrographic measurements. Capacity building will be necessary to integrate capabilities into programs and projects at a global scale. Progress can be facilitated by Open Science and Findable, Accessible, Interoperable, Reusable (FAIR) data principles and converge on agreed to data standards, practices, vocabularies, and registries. We envision expansion of the deep-ocean observing community to embrace the participation of academia, industry, NGOs, national governments, international governmental organizations, and the public at large in order to unlock critical knowledge contained in the deep ocean over coming decades, and to realize the mutual benefits of thoughtful deep-ocean observing for all elements of a sustainable ocean.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , peerRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-05-25
    Beschreibung: © The Author(s), 2018]. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Global Ecology and Biogeography 27 (2018): 760-786, doi:10.1111/geb.12729.
    Beschreibung: The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community‐led open‐source database of biodiversity time series. Our goal is to accelerate and facilitate quantitative analysis of temporal patterns of biodiversity in the Anthropocene. The database contains 8,777,413 species abundance records, from assemblages consistently sampled for a minimum of 2 years, which need not necessarily be consecutive. In addition, the database contains metadata relating to sampling methodology and contextual information about each record. BioTIME is a global database of 547,161 unique sampling locations spanning the marine, freshwater and terrestrial realms. Grain size varies across datasets from 0.0000000158 km2 (158 cm2) to 100 km2 (1,000,000,000,000 cm2). BioTIME records span from 1874 to 2016. The minimal temporal grain across all datasets in BioTIME is a year. BioTIME includes data from 44,440 species across the plant and animal kingdoms, ranging from plants, plankton and terrestrial invertebrates to small and large vertebrates.
    Beschreibung: European Research Council and EU, Grant/Award Number: AdG‐250189, PoC‐727440 and ERC‐SyG‐2013‐610028; Natural Environmental Research Council, Grant/Award Number: NE/L002531/1; National Science Foundation, Grant/Award Number: DEB‐1237733, DEB‐1456729, 9714103, 0632263, 0856516, 1432277, DEB‐9705814, BSR‐8811902, DEB 9411973, DEB 0080538, DEB 0218039, DEB 0620910, DEB 0963447, DEB‐1546686, DEB‐129764, OCE 95‐21184, OCE‐ 0099226, OCE 03‐52343, OCE‐0623874, OCE‐1031061, OCE‐1336206 and DEB‐1354563; National Science Foundation (LTER) , Grant/Award Number: DEB‐1235828, DEB‐1440297, DBI‐0620409, DEB‐9910514, DEB‐1237517, OCE‐0417412, OCE‐1026851, OCE‐1236905, OCE‐1637396, DEB 1440409, DEB‐0832652, DEB‐0936498, DEB‐0620652, DEB‐1234162 and DEB‐0823293; Fundação para a Ciência e Tecnologia, Grant/Award Number: POPH/FSE SFRH/BD/90469/2012, SFRH/BD/84030/2012, PTDC/BIA‐BIC/111184/2009; SFRH/BD/80488/2011 and PD/BD/52597/2014; Ciência sem Fronteiras/CAPES, Grant/Award Number: 1091/13‐1; Instituto Milenio de Oceanografía, Grant/Award Number: IC120019; ARC Centre of Excellence, Grant/Award Number: CE0561432; NSERC Canada; CONICYT/FONDECYT, Grant/Award Number: 1160026, ICM PO5‐002, CONICYT/FONDECYT, 11110351, 1151094, 1070808 and 1130511; RSF, Grant/Award Number: 14‐50‐00029; Gordon and Betty Moore Foundation, Grant/Award Number: GBMF4563; Catalan Government; Marie Curie Individual Fellowship, Grant/Award Number: QLK5‐CT2002‐51518 and MERG‐CT‐2004‐022065; CNPq, Grant/Award Number: 306170/2015‐9, 475434/2010‐2, 403809/2012‐6 and 561897/2010; FAPESP (São Paulo Research Foundation), Grant/Award Number: 2015/10714‐6, 2015/06743‐0, 2008/10049‐9, 2013/50714‐0 and 1999/09635‐0 e 2013/50718‐5; EU CLIMOOR, Grant/Award Number: ENV4‐CT97‐0694; VULCAN, Grant/Award Number: EVK2‐CT‐2000‐00094; Spanish, Grant/Award Number: REN2000‐0278/CCI, REN2001‐003/GLO and CGL2016‐79835‐P; Catalan, Grant/Award Number: AGAUR SGR‐2014‐453 and SGR‐2017‐1005; DFG, Grant/Award Number: 120/10‐2; Polar Continental Shelf Program; CENPES – PETROBRAS; FAPERJ, Grant/Award Number: E‐26/110.114/2013; German Academic Exchange Service; sDiv; iDiv; New Zealand Department of Conservation; Wellcome Trust, Grant/Award Number: 105621/Z/14/Z; Smithsonian Atherton Seidell Fund; Botanic Gardens and Parks Authority; Research Council of Norway; Conselleria de Innovació, Hisenda i Economia; Yukon Government Herschel Island‐Qikiqtaruk Territorial Park; UK Natural Environment Research Council ShrubTundra Grant, Grant/Award Number: NE/M016323/1; IPY; Memorial University; ArcticNet. DOI: 10.13039/50110000027. Netherlands Organization for Scientific Research in the Tropics NWO, grant W84‐194. Ciências sem Fronteiras and Coordenação de Pessoal de Nível Superior (CAPES, Brazil), Grant/Award Number: 1091/13‐1. National Science foundation (LTER), Award Number: OCE‐9982105, OCE‐0620276, OCE‐1232779. FCT ‐ SFRH / BPD / 82259 / 2011. U.S. Fish and Wildlife Service/State Wildlife federal grant number T‐15. Australian Research Council Centre of Excellence for Coral Reef Studies (CE140100020). Australian Research Council Future Fellowship FT110100609. M.B., A.J., K.P., J.S. received financial support from internal funds of University of Lódź. NSF DEB 1353139. Catalan Government fellowships (DURSI): 1998FI‐00596, 2001BEAI200208, MECD Post‐doctoral fellowship EX2002‐0022. National Science Foundation Award OPP‐1440435. FONDECYT 1141037 and FONDAP 15150003 (IDEAL). CNPq Grant 306595‐2014‐1
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2022-10-26
    Beschreibung: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Levin, L. A., Bett, B. J., Gates, A. R., Heimbach, P., Howe, B. M., Janssen, F., McCurdy, A., Ruhl, H. A., Snelgrove, P., Stocks, K., I., Bailey, D., Baumann-Pickering, S., Beaverson, C., Benfield, M. C., Booth, D. J., Carreiro-Silva, M., Colaco, A., Eble, M. C., Fowler, A. M., Gjerde, K. M., Jones, D. O. B., Katsumata, K., Kelley, D., Le Bris, N., Leonardi, A. P., Lejzerowicz, F., Macreadie, P., I., McLean, D., Meitz, F., Morato, T., Netburn, A., Pawlowski, J., Smith, C. R., Sun, S., Uchida, H., Vardaro, M. F., Venkatesan, R., & Weller, R. A. Global observing needs in the deep ocean. Frontiers in Marine Science, 6, (2019):241, doi: 10.3389/fmars.2019.00241.
    Beschreibung: The deep ocean below 200 m water depth is the least observed, but largest habitat on our planet by volume and area. Over 150 years of exploration has revealed that this dynamic system provides critical climate regulation, houses a wealth of energy, mineral, and biological resources, and represents a vast repository of biological diversity. A long history of deep-ocean exploration and observation led to the initial concept for the Deep-Ocean Observing Strategy (DOOS), under the auspices of the Global Ocean Observing System (GOOS). Here we discuss the scientific need for globally integrated deep-ocean observing, its status, and the key scientific questions and societal mandates driving observing requirements over the next decade. We consider the Essential Ocean Variables (EOVs) needed to address deep-ocean challenges within the physical, biogeochemical, and biological/ecosystem sciences according to the Framework for Ocean Observing (FOO), and map these onto scientific questions. Opportunities for new and expanded synergies among deep-ocean stakeholders are discussed, including academic-industry partnerships with the oil and gas, mining, cable and fishing industries, the ocean exploration and mapping community, and biodiversity conservation initiatives. Future deep-ocean observing will benefit from the greater integration across traditional disciplines and sectors, achieved through demonstration projects and facilitated reuse and repurposing of existing deep-sea data efforts. We highlight examples of existing and emerging deep-sea methods and technologies, noting key challenges associated with data volume, preservation, standardization, and accessibility. Emerging technologies relevant to deep-ocean sustainability and the blue economy include novel genomics approaches, imaging technologies, and ultra-deep hydrographic measurements. Capacity building will be necessary to integrate capabilities into programs and projects at a global scale. Progress can be facilitated by Open Science and Findable, Accessible, Interoperable, Reusable (FAIR) data principles and converge on agreed to data standards, practices, vocabularies, and registries. We envision expansion of the deep-ocean observing community to embrace the participation of academia, industry, NGOs, national governments, international governmental organizations, and the public at large in order to unlock critical knowledge contained in the deep ocean over coming decades, and to realize the mutual benefits of thoughtful deep-ocean observing for all elements of a sustainable ocean.
    Beschreibung: Preparation of this manuscript was supported by NNX16AJ87A (NASA) Consortium for Ocean Leadership, Sub-Award No. SA16-33. AC was supported by FCT-Investigador contract (IF/00029/2014/CP1230/CT0002). LL was supported by a NASA subaward from the Consortium for Ocean Leadership. AG and HR were supported by Horizon 2020, EU Project “EMSO Link” grant ID 731036. AG, BB, DJ, and HR contributions were supported by the UK Natural Environment Research Council Climate Linked Atlantic Section Science project (NE/R015953/1). JP was funded by the Swiss Network for International Studies, and the Swiss National Science Foundation (grant 31003A_179125). TM was supported by Program Investigador FCT (IF/01194/2013), IFCT Exploratory Project (IF/01194/2013/CP1199/CT0002), H2020 Atlas project (GA 678760), and the H2020 MERCES project (GA 689518). This is PMEL contribution number 4965.
    Schlagwort(e): Deep sea ; Ocean observation ; Blue economy ; Essential ocean variables ; Biodiversity ; Ocean sensors
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2019-09-23
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2022-01-31
    Beschreibung: Highlights • Seafloor geomorphology was important in the structuring of abyssal megafauna. • Differences in megafaunal community ecology were found between all landscape types. • Lower megafauna density & diversity in a bathymetric valley than flat and ridge areas. • Large samples, collected by AUV, were required to make robust ecological conclusions. The potential for imminent polymetallic nodule mining in the Clarion Clipperton Fracture Zone (CCZ) has attracted considerable scientific and public attention. This concern stems from both the extremely large seafloor areas that may be impacted by mining, and the very limited knowledge of the fauna and ecology of this region. The environmental factors regulating seafloor ecology are still very poorly understood. In this study, we focus on megafaunal ecology in the proposed conservation zone ‘Area of Particular Environmental Interest 6′ (study area centred 17°16′N, 122°55′W). We employ bathymetric data to objectively define three landscape types in the area (a level bottom Flat, an elevated Ridge, a depressed Trough; water depth 3950–4250 m) that are characteristic of the wider CCZ. We use direct seabed sampling to characterise the sedimentary environment in each landscape, detecting no statistically significant differences in particle size distributions or organic matter content. Additional seafloor characteristics and data on both the metazoan and xenophyophore components of the megafauna were derived by extensive photographic survey from an autonomous underwater vehicle. Image data revealed that there were statistically significant differences in seafloor cover by nodules and in the occurrence of other hard substrata habitat between landscapes. Statistically significant differences in megafauna standing stock, functional structuring, diversity, and faunal composition were detected between landscapes. The Flat and Ridge areas exhibited a significantly higher standing stock and a distinct assemblage composition compared to the Trough. Geomorphological variations, presumably regulating local bottom water flows and the occurrence of nodule and xenophyophore test substrata, between study areas may be the mechanism driving these assemblage differences. We also used these data to assess the influence of sampling unit size on the estimation of ecological parameters. We discuss these results in the contexts of regional benthic ecology and the appropriate management of potential mining activities in the CCZ and elsewhere in the deep ocean.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2022-01-31
    Beschreibung: The potential for imminent abyssal polymetallic nodule exploitation has raised considerable scientific attention. The interface between the targeted nodule resource and sediment in this unusual mosaic habitat promotes the development of some of the most biologically diverse communities in the abyss. However, the ecology of these remote ecosystems is still poorly understood, so it is unclear to what extent and timescale these ecosystems will be affected by, and could recover from, mining disturbance. Using data inferred from seafloor photo-mosaics, we show that the effects of simulated mining impacts, induced during the “DISturbance and reCOLonization experiment” (DISCOL) conducted in 1989, were still evident in the megabenthos of the Peru Basin after 26 years. Suspension-feeder presence remained significantly reduced in disturbed areas, while deposit-feeders showed no diminished presence in disturbed areas, for the first time since the experiment began. Nevertheless, we found significantly lower heterogeneity diversity in disturbed areas and markedly distinct faunal compositions along different disturbance levels. If the results of this experiment at DISCOL can be extrapolated to the Clarion-Clipperton Zone, the impacts of polymetallic nodule mining there may be greater than expected, and could potentially lead to an irreversible loss of some ecosystem functions, especially in directly disturbed areas.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    facet.materialart.
    Unbekannt
    ASLO (Association for the Sciences of Limnology and Oceanography) | Wiley
    In:  Limnology and Oceanography, 64 (5). pp. 1883-1894.
    Publikationsdatum: 2022-01-31
    Beschreibung: Abyssal polymetallic nodule fields constitute an unusual deep-sea habitat. The mix of soft sediment and the hard substratum provided by nodules increases the complexity of these environments. Hard substrata typically support a very distinct fauna to that of seabed sediments, and its presence can play a major role in the structuring of benthic assemblages. We assessed the influence of seafloor nodule cover on the megabenthos of a marine conservation area (area of particular environmental interest 6) in the Clarion Clipperton Zone (3950–4250 m water depth) using extensive photographic surveys from an autonomous underwater vehicle. Variations in nodule cover (1–20%) appeared to exert statistically significant differences in faunal standing stocks, some biological diversity attributes, faunal composition, functional group composition, and the distribution of individual species. The standing stock of both the metazoan fauna and the giant protists (xenophyophores) doubled with a very modest initial increase in nodule cover (from 1% to 3%). Perhaps contrary to expectation, we detected little if any substantive variation in biological diversity along the nodule cover gradient. Faunal composition varied continuously along the nodule cover gradient. We discuss these results in the context of potential seabed-mining operations and the associated sustainable management and conservation plans. We note in particular that successful conservation actions will likely require the preservation of areas comprising the full range of nodule cover and not just the low cover areas that are least attractive to mining.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2023-03-27
    Beschreibung: These data list the fish counts and densities observed using time-lapse cameras at the two DELOS observatory platforms, located at 1400 m water depth on the Angolan continental margin between February 2009 and July 2016. Timelapse photographs were captured from both the "Near Field" (NF; 7.90°S, 12.14°E) and "Far Field" (FF; 7.95°S, 12.28°E) DELOS observatories using a Kongsberg OE14-208 5.1 megapixel digital camera and a Kongsberg OE11-242 flash. Where appropriate: Fish counts are listed as no. individuals observed per photograph. Fish densities are listed as no. individuals observed per photograph, per calendar month, and multiplied by 1000. The DELOS platforms (DELOS A and DELOS B) are under Angolan jurisdiction and all activities must abide by Angolan law. As such, any person intending to publish DELOS data in any form is required to obtain prior permission from the National Concessionaire (Sonangol). Permission can be requested via Robert O'Brien at BP UK (Robert.OBrien@uk.bp.com) or the DELOS PI Dr. David Bailey (David.Bailey@glasgow.ac.uk). This process is not intended as a deterrent and applications to use DELOS data are welcomed. Participating Institutions: BP Exploration, BP Angola, University of Aberdeen, MBARI, National Oceanography Centre, INIP - Angola Instituto Nacional de Investigação Pesqueira (Angolan National Institute of Fisheries), Texas A&M University, Glasgow University
    Schlagwort(e): benthic observatory; Deep-ocean Environmental Long-term Observatory System; Deep sea; DELOS; Time series
    Materialart: Dataset
    Format: application/zip, 3 datasets
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2023-11-10
    Beschreibung: Seamounts are of great interest to science, industry and conservation because of their potential role as 'stirring rods' of the oceans, their enhanced productivity, their high local biodiversity, and the growing exploitation of their natural resources. This is accompanied by rising concern about the threats to seamount ecosystems, e.g. through over-fishing and the impact of trawling. OASIS described the functioning characteristics of seamount ecosystems. OASIS' integrated hydrographic, biogeochemical and biological information. Based on two case studies. The scientific results, condensed in conceptual and mass balanced ecosystem models, were applied to outline a model management plan as well as site-specific management plans for the seamounts investigated. OASIS addressed five main objectives: Objective 1: To identify and describe the physical forcing mechanisms effecting seamount systems Objective 2: To assess the origin, quality and dynamics of particulate organic material within the water column and surface sediment at seamounts. Objective 3: To describe aspects of the biodiversity and the ecology of seamount biota, to assess their dynamics and the maintenance of their production. Objective 4: Modelling the trophic ecology of seamount ecosystems. Objective 5: Application of scientific knowledge to practical conservation.
    Schlagwort(e): OASIS; Oceanic Seamounts: an Integrated Study
    Materialart: Dataset
    Format: application/zip, 338 datasets
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2023-11-08
    Schlagwort(e): benthic observatory; Date; Date/Time local; Day of the year; Days, cumulated; Deep-ocean Environmental Long-term Observatory System; Deep sea; DELOS; DELOS_B; Fish; Image number/name; Monitoring station; MONS; South Atlantic Ocean; Time series
    Materialart: Dataset
    Format: text/tab-separated-values, 35514 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...