GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography) | Wiley
    In:  Limnology and Oceanography, 64 (5). pp. 1883-1894.
    Publication Date: 2022-01-31
    Description: Abyssal polymetallic nodule fields constitute an unusual deep-sea habitat. The mix of soft sediment and the hard substratum provided by nodules increases the complexity of these environments. Hard substrata typically support a very distinct fauna to that of seabed sediments, and its presence can play a major role in the structuring of benthic assemblages. We assessed the influence of seafloor nodule cover on the megabenthos of a marine conservation area (area of particular environmental interest 6) in the Clarion Clipperton Zone (3950–4250 m water depth) using extensive photographic surveys from an autonomous underwater vehicle. Variations in nodule cover (1–20%) appeared to exert statistically significant differences in faunal standing stocks, some biological diversity attributes, faunal composition, functional group composition, and the distribution of individual species. The standing stock of both the metazoan fauna and the giant protists (xenophyophores) doubled with a very modest initial increase in nodule cover (from 1% to 3%). Perhaps contrary to expectation, we detected little if any substantive variation in biological diversity along the nodule cover gradient. Faunal composition varied continuously along the nodule cover gradient. We discuss these results in the context of potential seabed-mining operations and the associated sustainable management and conservation plans. We note in particular that successful conservation actions will likely require the preservation of areas comprising the full range of nodule cover and not just the low cover areas that are least attractive to mining.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Massive swarms of the red crab Pleuroncodes planipes (Stimpson, 1860), a species of squat lobster, are a dominant functional component of the upwelling ecosystem in the eastern Pacific Ocean (Boyd, 1967; Smith et al., 1975). These swarms can wash ashore on the coast, creating mass depositions of crustacean carcasses, a striking phenomenon that has been long documented in Baja California and California (Aurioles-Gamboa et al., 1994; Boyd, 1967). However, little is known about the fate of crab swarms transported offshore by oceanic currents. In May 2015, using an autonomous deep-sea robot, we discovered an unexpectedly large fall of red crab carcasses (〉1000 carcasses ha−1) at a depth of 4050 m on the abyssal Pacific seafloor (Figure 1), almost 1500 km from their spawning areas off the northwest American coast. Several questions arise from this unexpected finding that may help unveil additional close linkages in nutritional transport between processes at the sea surface and the remote abyssal seafloor.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...