GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Forschungsdaten  (32)
  • 2015-2019  (32)
Publikationsart
Schlagwörter
Verlag/Herausgeber
Erscheinungszeitraum
Jahr
  • 1
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Kretschmer, Kerstin; Jonkers, Lukas; Kucera, Michal; Schulz, Michael (2018): Modeling seasonal and vertical habitats of planktonic foraminifera on a global scale. Biogeosciences, 15, 4405-4429, https://doi.org/10.5194/bg-15-4405-2018
    Publikationsdatum: 2023-03-03
    Beschreibung: Species of planktonic foraminifera exhibit specific seasonal production patterns and different preferred vertical habitats. The seasonality and vertical habitats are not constant throughout the range of the species and changes therein must be considered when interpreting paleoceanographic reconstructions based on fossil foraminifera. Accounting for the effect of vertical and seasonal habitat tracking on foraminifera proxies at times of climate change is difficult because it requires independent fossil evidence. An alternative that could reduce the bias in paleoceanographic reconstructions is to predict species-specific habitat shifts under climate change using an ecosystem modeling approach. To this end, we present a new version of a planktonic foraminifera model, PLAFOM2.0, embedded into the ocean component of the Community Earth System Model, version 1.2.2. This model predicts monthly global concentrations of the planktonic foraminiferal species: Neogloboquadrina pachyderma, N. incompta, Globigerina bulloides, Globigerinoides ruber (white), and Trilobatus sacculifer throughout the world ocean, resolved in 24 vertical layers to 250m depth. The resolution along the vertical dimension has been implemented by applying the previously used spatial parameterization of biomass as a function of temperature, light, nutrition, and competition on depth-resolved parameter fields. This approach alone results in the emergence of species-specific vertical habitats, which are spatially and temporally variable. Although an explicit parameterization of the vertical dimension has not been carried out, the seasonal and vertical distribution patterns predicted by the model are in good agreement with sediment trap data and plankton tow observations. In the simulation, the colder-water species N. pachyderma, N. incompta, and G. bulloides show a pronounced seasonal cycle in their depth habitat in the polar and subpolar regions, which appears to be controlled by food availability. During the warm season, these species preferably occur in the subsurface, while towards the cold season they ascend through the water column and are found closer to the sea surface. The warm-water species G. ruber (white) and T. sacculifer exhibit a less variable shallow depth habitat with highest biomass concentrations within the top 40m of the water column. Nevertheless, even these species show vertical habitat variability and their seasonal occurrence outside the tropics is limited to the warm surface layer that develops at the end of the warm season. The emergence in PLAFOM2.0 of species-specific vertical habitats that are consistent with observations indicates that the population dynamics of planktonic foraminifera species may be driven by the same factors in time, space, and with depth, in which case the model can provide a reliable and robust tool to aid the interpretation of proxy records.
    Schlagwort(e): Center for Marine Environmental Sciences; File format; File name; File size; MARUM; Uniform resource locator/link to file
    Materialart: Dataset
    Format: text/tab-separated-values, 44 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Jonkers, Lukas; Kucera, Michal (2015): Global analysis of seasonality in the shell flux of extant planktonic Foraminifera. Biogeosciences, 12(7), 2207-2226, https://doi.org/10.5194/bg-12-2207-2015
    Publikationsdatum: 2023-01-13
    Beschreibung: Shell fluxes of planktonic Foraminifera species vary intra-annually in a pattern that appears to follow the seasonal cycle. However, the variation in the timing and prominence of seasonal flux maxima in space and among species remains poorly constrained. Thus, although changing seasonality may result in a flux-weighted temperature offset of more than 5° C within a species, this effect is often ignored in the interpretation of Foraminifera-based paleoceanographic records. To address this issue we present an analysis of the intra-annual pattern of shell flux variability in 37 globally distributed time series. The existence of a seasonal component in flux variability was objectively characterised using periodic regression. This analysis yielded estimates of the number, timing and prominence of seasonal flux maxima. Over 80% of the flux series across all species showed a statistically significant periodic component, indicating that a considerable part of the intra-annual flux variability is predictable. Temperature appears to be a powerful predictor of flux seasonality, but its effect differs among species. Three different modes of seasonality are distinguishable. Tropical and subtropical species (Globigerinoides ruber (white and pink varieties), Neogloboquadrina dutertrei, Globigerinoides sacculifer, Orbulina universa, Globigerinella siphonifera, Pulleniatina obliquiloculata, Globorotalia menardii, Globoturborotalita rubescens, Globoturborotalita tenella and Globigerinoides conglobatus) appear to have a less predictable flux pattern, with random peak timing in warm waters. In colder waters, seasonality is more prevalent: peak fluxes occur shortly after summer temperature maxima and peak prominence increases. This tendency is stronger in species with a narrower temperature range, implying that warm-adapted species find it increasingly difficult to reproduce outside their optimum temperature range and that, with decreasing mean temperature, their flux is progressively more focussed in the warm season. The second group includes the temperate to cold-water species Globigerina bulloides, Globigerinita glutinata, Turborotalita quinqueloba, Neogloboquadrina incompta, Neogloboquadrina pachyderma, Globorotalia scitula, Globigerinella calida, Globigerina falconensis, Globorotalia theyeri and Globigerinita uvula. These species show a highly predictable seasonal pattern, with one to two peaks a year, which occur earlier in warmer waters. Peak prominence in this group is independent of temperature. The earlier-when-warmer pattern in this group is related to the timing of productivity maxima. Finally, the deep-dwelling Globorotalia truncatulinoides and Globorotalia inflata show a regular and pronounced peak in winter and spring. The remarkably low flux outside the main pulse may indicate a long reproductive cycle of these species. Overall, our analysis indicates that the seasonality of planktonic Foraminifera shell flux is predictable and reveals the existence of distinct modes of phenology among species. We evaluate the effect of changing seasonality on paleoceanographic reconstructions and find that, irrespective of the seasonality mode, the actual magnitude of environmental change will be underestimated. The observed constraints on flux seasonality can serve as the basis for predictive modelling of flux pattern. As long as the diversity of species seasonality is accounted for in such models, the results can be used to improve reconstructions of the magnitude of environmental change in paleoceanographic records.
    Materialart: Dataset
    Format: application/zip, 2 datasets
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Jonkers, Lukas; Zahn, Rainer; Thomas, Alexander; Henderson, Gideon M; Abouchami, Wafa; Francois, Roger; Masqué, Pere; Hall, Ian R; Bickert, Torsten (2015): Deep circulation changes in the central South Atlantic during the past 145 kyrs reflected in a combined 231Pa/230Th, Neodymium isotope and benthic d13C record. Earth and Planetary Science Letters, 419, 14-21, https://doi.org/10.1016/j.epsl.2015.03.004
    Publikationsdatum: 2023-07-05
    Beschreibung: Previous work showed that South Atlantic sediments have lower glacial than Holocene 231Pa/230Th, which was attributed to a switch in the flow direction of Atlantic deep-water. Debate exists, however as to the degree to which two processes - circulation and scavenging - determine sedimentary 231Pa/230Th, making this interpretation contentious. Here we address this issue using 145-kyr records of paleocirculation proxies. Benthic foraminiferal d13C, neodymium isotopes (ENd) and sedimentary 231Pa/230Th were all measured in a single sediment core from the South Atlantic subtropical gyre. This site largely excludes the influence of local productivity changes on 231Pa/230Th records. Measured 231Pa/230Th ranges between ~0.041 during glacials to ~0.055 during interglacial periods and are consistently lower than the production ratio, indicating export of 231Pa from the central South Atlantic for the entire duration of the record. The lower glacial 231Pa/230Th is regionally consistent, suggesting that basin-scale oceanographic processes cause the decrease. In turn, less radiogenic ENd and lower benthic d13C confirm the classical picture of an increase in Southern Component Water (SCW) influence in the Atlantic during glacial periods and point to a circulation control on the observed 231Pa/230Th decrease rather than a local productivity change. We suggest that associated with this change in water mass distribution the dominant sink for 231Pa shifted from the margins of the South Atlantic and/or the Southern Ocean during interglacials, to the North Atlantic during glacial periods. Indeed, elevated 231Pa/230Th in the deep North Atlantic during glacials supports this mechanism of northward transport of 231Pa by SCW.
    Schlagwort(e): Center for Marine Environmental Sciences; GeoB; Geosciences, University of Bremen; MARUM
    Materialart: Dataset
    Format: application/zip, 3 datasets
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2023-07-05
    Schlagwort(e): Chlorophyll fluorometer, Seapoint, Seapoint chlorophyll fluorometer; CTD/Rosette; CTD-RO; DEPTH, water; EUROFLEETS_Iberia-Forams; Fluorescence, chlorophyll; Garcia del Cid; Ib-F6; South Atlantic Ocean
    Materialart: Dataset
    Format: text/tab-separated-values, 25169 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2023-07-05
    Schlagwort(e): Chlorophyll fluorometer, Seapoint, Seapoint chlorophyll fluorometer; CTD/Rosette; CTD-RO; DEPTH, water; EUROFLEETS_Iberia-Forams; Fluorescence, chlorophyll; Garcia del Cid; Ib-F12; South Atlantic Ocean
    Materialart: Dataset
    Format: text/tab-separated-values, 24290 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Rebotim, Andreia; Voelker, Antje H L; Jonkers, Lukas; Waniek, Joanna J; Meggers, Helge; Schiebel, Ralf; Fraile, I; Schulz, Michael; Kucera, Michal (2017): Factors controlling the depth habitat of planktonic foraminifera in the subtropical eastern North Atlantic. Biogeosciences, 14(4), 827-859, https://doi.org/10.5194/bg-14-827-2017
    Publikationsdatum: 2023-07-05
    Beschreibung: Planktonic foraminifera preserved in marine sediments archive the physical and chemical conditions under which they built their shells. To interpret the paleoceanographic information contained in fossil foraminifera, the proxy signals have to be attributed to the habitat of individual species. Much of our knowledge on habitat depth is based on indirect methods, which reconstruct the depth at which the largest portion of the shell has been calcified. However, habitat depth can be best studied by direct observations in stratified plankton nets. Here we present a synthesis of living planktonic foraminifera abundance data in vertically resolved plankton net hauls taken in the eastern North Atlantic during twelve oceanographic campaigns between 1995 and 2012. Live (cytoplasm-bearing) specimens were counted for each depth interval and the vertical habitat at each station was expressed as average living depth (ALD). This allows us to differentiate species showing an ALD consistently above 100 m (e.g. Globigerinoides ruber white and pink), indicating a shallow habitat; species occurring from the surface to the subsurface (e.g. Globigerina bulloides, Globorotalia inflata, Globorotalia truncatulinoides); and species inhabiting the subsurface (e.g. Globorotalia scitula and Globorotalia hirsuta). For 17 species with variable ALD, we assessed whether their depth habitat at a given station could be predicted by mixed layer (ML) depth, temperature in the ML and chlorophyll a concentration in the ML. The influence of seasonal and lunar cycle on the depth habitat was also tested using periodic regression. In 11 out of the 17 tested species, ALD variation appears to have a predictable component. All of the tested parameters were significant at least in one case, with both seasonal and lunar cyclicity as well as the environmental parameters being able to explain up to 〉50% of the variance. Whereas G. truncatulinoides, G. hirsuta and G. scitula appear to deepen their living depth towards the summer, populations of Trilobatus sacculifer appear to descend in the water column towards the new moon. In all other species, properties of the mixed layer explained more of the observed variance. Chlorophyll a concentration seems least important for ALD, whilst shoaling of the habitat with deepening of the ML is observed most frequently. We observe both shoaling and deepening of species habitat with increasing temperature. Further, we observe that temperature and seawater density at the depth of the ALD were not equally variable among the studied species, and their variability showed no consistent relationship with depth habitat. According to our results, depth habitat of individual species changes in response to different environmental and ontogenetic factors and consequently planktonic foraminifera exhibit not only species-specific mean habitat depths but also species-specific changes in habitat depth.
    Schlagwort(e): Canary Islands Azores Gibraltar Observations; CANIGO
    Materialart: Dataset
    Format: application/zip, 8 datasets
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2023-07-05
    Schlagwort(e): Chlorophyll fluorometer, Seapoint, Seapoint chlorophyll fluorometer; CTD/Rosette; CTD-RO; DEPTH, water; EUROFLEETS_Iberia-Forams; Fluorescence, chlorophyll; Garcia del Cid; Ib-F2; South Atlantic Ocean
    Materialart: Dataset
    Format: text/tab-separated-values, 33128 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2023-07-05
    Schlagwort(e): Chlorophyll fluorometer, Seapoint, Seapoint chlorophyll fluorometer; CTD/Rosette; CTD-RO; DEPTH, water; EUROFLEETS_Iberia-Forams; Fluorescence, chlorophyll; Garcia del Cid; Ib-F9; South Atlantic Ocean
    Materialart: Dataset
    Format: text/tab-separated-values, 12232 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2023-07-05
    Schlagwort(e): Chlorophyll fluorometer, Seapoint, Seapoint chlorophyll fluorometer; CTD/Rosette; CTD-RO; DEPTH, water; EUROFLEETS_Iberia-Forams; Fluorescence, chlorophyll; Garcia del Cid; Ib-F8; South Atlantic Ocean
    Materialart: Dataset
    Format: text/tab-separated-values, 12574 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2023-07-11
    Schlagwort(e): AGE; Calcium carbonate; Counting 150-250 µm fraction; DEPTH, sediment/rock; DS97-2P; End member; Laser Particle Analyser, Fritsch GmbH, Analysette 22; log-Titanium/Potassium ratio; Mass spectrometer Finnigan MAT 252 coupled to a Kiel II device and Delta+ with gasbench; Neogloboquadrina pachyderma; Neogloboquadrina pachyderma, Magnesium/Calcium ratio; Neogloboquadrina pachyderma, δ13C; Neogloboquadrina pachyderma, δ18O; North Atlantic; PC; Piston corer; PL97; Professor Logachev; Size fraction; Varian Vista Pro Inductively Coupled Plasma Atomic Emission Spectrometer
    Materialart: Dataset
    Format: text/tab-separated-values, 21526 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...