GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Keywords
Language
Years
  • 1
    Keywords: Hochschulschrift
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (83 Seiten = 7 MB) , Graphen, Karten
    Edition: 2022
    Language: English
    Note: Zusammenfassung in deutscher und englischer Sprache
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Hochschulschrift
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (36 Blatt = 4 MB)
    Language: German
    Note: Zusammenfassung in deutscher und englischer Sprache
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Kretschmer, Kerstin; Kucera, Michal; Schulz, Michael (2016): Modeling the distribution and seasonality of Neogloboquadrina pachyderma in the North Atlantic Ocean during Heinrich Stadial 1. Paleoceanography, 31(7), 986-1010, https://doi.org/10.1002/2015PA002819
    Publication Date: 2023-03-03
    Description: Fossil shells of planktonic foraminifera serve as the prime source of information on past changes in surface ocean conditions. Because the population size of planktonic foraminifera species changes throughout the year, the signal preserved in fossil shells is biased towards the conditions when species production was at its maximum. The amplitude of the potential seasonal bias is a function of the magnitude of the seasonal cycle in production. Here we use a planktonic foraminifera model coupled to an ecosystem model to investigate to what degree seasonal variations in production of the species Neogloboquadrina pachyderma may affect paleoceanographic reconstructions during Heinrich Stadial 1 (~18-15 cal. ka B.P.) in the North Atlantic Ocean. The model implies that during Heinrich Stadial 1 the maximum seasonal production occurred later in the year compared to the Last Glacial Maximum (~21-19 cal. ka B.P.) and the pre-industrial era north of 30 ºN. A diagnosis of the model output indicates that this change reflects the sensitivity of the species to the seasonal cycle of sea-ice cover and food supply, which collectively lead to shifts in the modeled maximum production from the Last Glacial Maximum to Heinrich Stadial 1 by up to six months. Assuming equilibrium oxygen isotopic incorporation in the shells of N. pachyderma, the modeled changes in seasonality would result in an underestimation of the actual magnitude of the meltwater isotopic signal recorded by fossil assemblages of N. pachyderma wherever calcification is likely to take place.
    Keywords: Center for Marine Environmental Sciences; MARUM
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Kretschmer, Kerstin; Jonkers, Lukas; Kucera, Michal; Schulz, Michael (2018): Modeling seasonal and vertical habitats of planktonic foraminifera on a global scale. Biogeosciences, 15, 4405-4429, https://doi.org/10.5194/bg-15-4405-2018
    Publication Date: 2023-03-03
    Description: Species of planktonic foraminifera exhibit specific seasonal production patterns and different preferred vertical habitats. The seasonality and vertical habitats are not constant throughout the range of the species and changes therein must be considered when interpreting paleoceanographic reconstructions based on fossil foraminifera. Accounting for the effect of vertical and seasonal habitat tracking on foraminifera proxies at times of climate change is difficult because it requires independent fossil evidence. An alternative that could reduce the bias in paleoceanographic reconstructions is to predict species-specific habitat shifts under climate change using an ecosystem modeling approach. To this end, we present a new version of a planktonic foraminifera model, PLAFOM2.0, embedded into the ocean component of the Community Earth System Model, version 1.2.2. This model predicts monthly global concentrations of the planktonic foraminiferal species: Neogloboquadrina pachyderma, N. incompta, Globigerina bulloides, Globigerinoides ruber (white), and Trilobatus sacculifer throughout the world ocean, resolved in 24 vertical layers to 250m depth. The resolution along the vertical dimension has been implemented by applying the previously used spatial parameterization of biomass as a function of temperature, light, nutrition, and competition on depth-resolved parameter fields. This approach alone results in the emergence of species-specific vertical habitats, which are spatially and temporally variable. Although an explicit parameterization of the vertical dimension has not been carried out, the seasonal and vertical distribution patterns predicted by the model are in good agreement with sediment trap data and plankton tow observations. In the simulation, the colder-water species N. pachyderma, N. incompta, and G. bulloides show a pronounced seasonal cycle in their depth habitat in the polar and subpolar regions, which appears to be controlled by food availability. During the warm season, these species preferably occur in the subsurface, while towards the cold season they ascend through the water column and are found closer to the sea surface. The warm-water species G. ruber (white) and T. sacculifer exhibit a less variable shallow depth habitat with highest biomass concentrations within the top 40m of the water column. Nevertheless, even these species show vertical habitat variability and their seasonal occurrence outside the tropics is limited to the warm surface layer that develops at the end of the warm season. The emergence in PLAFOM2.0 of species-specific vertical habitats that are consistent with observations indicates that the population dynamics of planktonic foraminifera species may be driven by the same factors in time, space, and with depth, in which case the model can provide a reliable and robust tool to aid the interpretation of proxy records.
    Keywords: Center for Marine Environmental Sciences; File format; File name; File size; MARUM; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 44 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-03-03
    Keywords: Center for Marine Environmental Sciences; File format; File name; File size; MARUM; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 20 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-02
    Keywords: A150/180; A180-39; Age, comment; Akademik Mstislav Keldysh; Alboran Sea; AMKxx; ARK-II/5; Biscaya; CALYPSO; Calypso Corer; Center for Marine Environmental Sciences; Depth, bottom/max; Depth, top/min; Event label; GC; Giant box corer; GIK15612-2; GIK15637-1; GIK16396-1; GIK17045-3; GIK17049-6; GIK17051-3; GIK17730-4; GIK23065-2; GIK23071-3; GIK23074-1; GIK23243-1 PS05/431; GIK23415-9; GKG; Globigerina bulloides; Globigerinoides ruber white; Globigerinoides sacculifer; Gravity corer; Gravity corer (Kiel type); Gulf of Lions; IMAGES I; KAL; Kasten corer; KOL; L-198; L-348; Le Suroît; M11/1; M13/2; M17/2; M2/2; M35/1; M35003-4; M53; M57; Marion Dufresne (1972); Marion Dufresne (1995); MARUM; MD101; MD81-BC15; MD952040; MD95-2040; MD952041; MD95-2041; MD952043; MD95-2043; Meteor (1964); Meteor (1986); Mikhail Lomonosov; MK-316; MLxx; Neogloboquadrina incompta; Neogloboquadrina pachyderma; North Atlantic; Northeast Atlantic; Norwegian Sea; Number; off Iceland; OSIRIS5; PALEOCINAT II; PC; Piston corer; Piston corer (Kiel type); PO158/B; Polarstern; Porto Seamount; POS158/2; Poseidon; PS05; PS1243-1; RC09; RC09-49; RC13; RC13-189; RC24; RC24-1; Reference/source; Reykjanes Ridge; Robert Conrad; Rockall Rise; Size fraction; SL; Standard deviation; SU92; SU92-03; V15; V15-168; V25; V25-59; V25-60; V25-75; V27; V27-178; V30; V30-36; V30-41; V30-49; V30-51; Vema; west of Iceland
    Type: Dataset
    Format: text/tab-separated-values, 558 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  (Bachelor thesis), Christian-Albrechts-Universität, Kiel, Germany, 34 pp
    Publication Date: 2019-09-23
    Description: The effects of global warming on the stability of gas hydrates are investigated in the shelf regions of the Beaufort Sea. The mean conditions as well as the natural occuring variability of the bottom water temperatures in terms of the anthropogenic influences are examined. The analysis of the structure and variability of the bottom water temperature over the period from 1958 to 2004 was performed with the global ocean/sea-ice configuration ORCA05. The future climate trend was simulated with the Kiel Climate Model. An ensemble of eight 100-year long climate scenarios was available. The gas hydrate stability analyses are based on the calculations of the dissociation pressure. The gas hydrate stability mainly depends on pressure and temperature conditions in the water column. Therefore the temperature changes in the shelf regions of the Beaufort Sea had come into focus. The analysis of the bottom water temperatures resulted in a warming of the shelf of about 1.5 ◦C within the next 100 years. This can be ascribed to the influence of the Atlantic inflow. Due to the increasing warming in the boundary layers of the Beaufort Sea the possibly stored methane hydrate could be destabilised. As a consequence, methane gas could be released into the water column. This could lead to an interaction with the atmosphere and hence accelerate the natural greenhouse effect. A significant impact of the Atlantic inflow on the gas hydrate stability zone was verified. Especially in the shelf regions a phase shift from hydrate to gas can occur resulting in a possible gas release into the atmosphere. This would enhance global climate change.
    Keywords: Course of study: BSc Physics of the Earth System
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-09-23
    Description: Summary Meteor Cruise M81/1 was dedicated to the investigation of the distribution of dissolved and particulate trace metals and their isotopic compositions (TEIs) in the full water column of the tropical Atlantic Ocean and their driving factors including main external inputs and internal cycling and ocean circulation. The research program is embedded in the international GEOTRACES program (e.g. Henderson et al., 2007), which this cruise was an official part of and thus corresponds to GEOTRACES cruise GA11. This cruise was completely dedicated to the trace metal clean and contamination-free sampling of waters and particulates for subsequent analyses of the TEIs in the home laboratories of the national and international participants. Besides a standard rosette for the less contaminant prone metals, trace metal clean sampling was realized by using a dedicated and coated trace metal clean rosette equipped with Teflon-coated GO-FLO bottles operated via a polyester coated cable from a mobile winch that was thankfully made available by the U.S. partners of the GEOTRACES program for this cruise. The particulate samples were also collected under trace metal clean conditions using established in-situ pump systems. The cruise track led the cruise southward from the Canary Islands to 11°S and then continued northwestward along the northern margin of South America until it reached Port of Spain, Trinidad & Tobago. The track crossed areas of major external inputs including exchange with the volcanic Canary Islands, the Saharan dust plume, as well as the plume of the Amazon outflow. In terms of internal cycling the equatorial high biological productivity band, as well as increased productivity associated with the Amazon Plume were covered. All major water masses contributing the Atlantic Meridional Overturning Circulation, as well as the distinct narrow equatorial surface and subsurface east-west current bands were sampled. A total of 17 deep stations were sampled for the different dissolved TEIs, which were in most cases accompanied by particulate sampling. In addition, surface waters were continuously sampled under trace metal clean conditions using a towed fish.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  [Poster] In: EGU General Assembly 2011, 03.-08.04.2011, Vienna, Austria .
    Publication Date: 2014-07-21
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Arctic Monitoring and Assessment Programme (AMAP)
    In:  In: AMAP Assessment 2015: Methane as an Arctic climate forcer. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, pp. 27-38. ISBN 978-82-7971-091-2
    Publication Date: 2019-02-26
    Type: Book chapter , NonPeerReviewed , info:eu-repo/semantics/bookPart
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...