GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Center for Marine Environmental Sciences; Leibniz Centre for Tropical Marine Research; MARUM; ZMT
  • Sea-surface temperatures
  • 2015-2019  (1)
Document type
Keywords
Publisher
Years
Year
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Contreras-Rosales, Lorena Astrid; Jennerjahn, Tim C; Steinke, Stephan; Mohtadi, Mahyar; Schefuß, Enno (2019): Holocene changes in biome size and tropical cyclone activity around the Northern South China Sea. Quaternary Science Reviews, 215, 45-63, https://doi.org/10.1016/j.quascirev.2019.05.004
    Publication Date: 2023-03-03
    Description: The South China Sea (SCS), characterized by a large continental shelf, is located at the edge of the Asian monsoon domain. In this study, two marine sediment cores from the northern SCS (NSCS) continental slope were investigated to construct composite vegetation and precipitation isotopic composition records based on the δ13C and δD values of plant-wax n-alkanes throughout the Holocene (last 11,200 years; i.e. 11.2 ka). The composite δ13Cwax record indicates an overall predominance of C3 vegetation over the last 11.2 ka. Before 8 ka BP, higher δ13Cwax values are attributed to preferential wax input from grassland and wetland biomes on the exposed continental shelf. After the inundation of the shelf by eustatic sea level rise until ca. 8 ka BP grassland and wetland biomes suffered a major size reduction and arboreal vegetation became better represented in the δ13Cwax record. The composite temperature corrected δDwax-T record suggests that moisture source variability drove precipitation isotopic composition changes during the Holocene. Lower δDwax-T values before 8.3 ka BP are interpreted as a larger moisture contribution by Pacific Ocean tropical cyclones, whereas higher δDwax-T values after 8.5 ka BP are interpreted as a larger moisture contribution from the Indian Ocean summer monsoon. Higher incidence of tropical cyclones in the NSCS during the Early Holocene was related to a temporary westward shift of the Western Pacific Warm Pool and enhanced insolation over the Northern Hemisphere. Both external and internal forcing mechanisms regulated moisture source changes in East Asia during the Holocene.
    Keywords: Center for Marine Environmental Sciences; Leibniz Centre for Tropical Marine Research; MARUM; ZMT
    Type: Dataset
    Format: application/zip, 5 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...