GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-01-19
    Description: Europe has been affected by record‐breaking heat waves in recent decades. Using station data and a gridded reanalysis as input, four commonly used heat wave indices, the heat wave magnitude index daily (HWMId), excess heat factor (EHF), wet‐bulb globe temperature (WBGT) and universal thermal climate index (UTCI), are computed. The extremeness of historical European heat waves between 1979 and 2019 using the four indices and different metrics is ranked. A normalisation to enable the comparison between the four indices is introduced. Additionally, a method to quantify the influence of the input parameters on heat wave magnitude is introduced. The spatio‐temporal behaviour of heat waves is assessed by spatial–temporal tracking. The areal extent, large‐scale intensity and duration are visualized using bubble plots. As expected, temperature explains the largest variance in all indices, but humidity is nearly as important in WBGT and wind speed plays a substantial role in UTCI. While the 2010 Russian heat wave is by far the most extreme event in duration and intensity in all normalized indices, the 2018 heat wave was comparable in size for EHF, WBGT and UTCI. Interestingly, the well‐known 2003 central European heat wave was only the fifth and tenth strongest in cumulative intensity in WBGT and UTCI, respectively. The June and July 2019 heat waves were very intense, but short‐lived, thus not belonging to the top heat waves in Europe when duration and areal extent are taken into account. Overall, the proposed normalized indices and the multi‐metric assessment of large‐scale heat waves allow for a more robust description of their extremeness and will be helpful to assess heat waves worldwide and in climate projections.
    Description: Europe has been affected by record‐breaking heat waves in recent decades. Using station data and a gridded reanalysis, the extremeness of European heat waves between 1979 and 2019 is ranked using four indices: heat wave magnitude index daily (HWMId), excess heat factor (EHF), wet‐bulb globe temperature (WBGT) and universal thermal climate index (UTCI). In order to assess heatwaves worldwide and in climate projections, the spatial extent, large‐scale intensity and duration of heatwaves are visualized using bubble plots.
    Description: AXA Research Fund http://dx.doi.org/10.13039/501100001961
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Karlsruher Institut für Technologie http://dx.doi.org/10.13039/100009133
    Keywords: ddc:551.5 ; duration ; heat wave ; indices ; intensity ; large‐scale ; spatial extent
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-11-02
    Description: Extra‐tropical cyclones are an important source of weather variability in the mid‐latitudes. Multiple occurrences in a short period of time at a particular location are denominated serial cyclone clustering (SCC), and potentially lead to large societal impacts. We investigate the relationship between SCC affecting Western Europe and large‐scale weather regimes (WRs) in the North Atlantic‐European region in boreal winter. We find that SCC in low latitudes (45°N) is predominantly associated with the anticyclonic Greenland Blocking WR. In contrast, SCC in mid and high latitudes (55°N, 65°N) is mostly linked to different cyclonic WRs. Thereby, SCC occurs typically within a well‐established WR that builds up prior to SCC and decays after SCC. Thus, SCC events are closely associated with recurrent, quasi‐stationary and persistent large‐scale flow patterns (WRs). This mutual relationship reveals the potential of WRs in forecasting storm series and associated impacts on sub‐seasonal to seasonal time scales.
    Description: Plain Language Summary: Serial cyclone clustering describes the occurrence of multiple extra‐tropical cyclones within a certain time frame and a spatially restricted region. Since extra‐tropical cyclones can be associated with strong winds and heavy precipitation, multiple occurrences can lead to large cumulative impacts in the affected areas. We analyze the relationship between serial cyclone clustering (SCC) in Western Europe and so‐called weather regimes (WRs) in the North Atlantic‐European region in boreal winter. These regimes describe slow evolving and enduring large‐scale atmospheric circulation patterns. Relationships with certain regime types are identified but depend on the latitude at which the clustered frequency of extra‐tropical cyclones is found. When SCC occurs in low latitudes (45°N), it mostly appears coincident with anticyclonic large‐scale flow patterns. In contrast, SCC in mid and high latitudes (55°N, 65°N) often occurs simultaneously with different cyclonic regimes. We find that periods of SCC occur typically within WR life cycles pointing to the fact that both, the WRs and SCC periods, are interlinked. This relationship may facilitate forecasting storm series and associated impacts on time scales beyond 2 weeks.
    Description: Key Points: A close relationship is found between serial cyclone clustering (SCC) at 5°W and weather regimes (WRs) in the North Atlantic‐European region. SCC in mid and high latitudes (55°N, 65°N) is mainly associated with cyclonic and in low latitudes (45°N) with anticyclonic WR life cycles. Regardless of the selected latitude, SCC occurs mostly during an active regime life cycle and is manifested in a well‐established WR.
    Description: German Research Foundation
    Description: AXA Research Fund http://dx.doi.org/10.13039/501100001961
    Description: Helmholtz Association http://dx.doi.org/10.13039/501100009318
    Description: BMBF ClimXtreme
    Description: https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim
    Keywords: ddc:551.5 ; serial cyclone clustering ; weather regimes ; atmospheric dynamics ; sub‐seasonal prediction
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-01-12
    Description: Regional and local wind systems are often complex, particularly near coastal areas with a highly variable orography. Thus, the realistic representation of regional wind systems in weather and climate models is of strong relevance. Here, we evaluate the ability of a 13‐year convection‐permitting climate simulation in reproducing the interaction of several regional summer wind systems over the complex orography in the eastern Mediterranean region. The COSMO‐CLM simulations are driven by hourly ERA‐5 reanalysis and have a spatial resolution of 2.8 and 7.0 km. The simulated near‐surface wind fields are compared with unique very high‐resolution wind observations collected within the “Dead Sea Research Venue” project (DESERVE) and data from the Israel Meteorological Service synop network. The high‐resolution COSMO‐CLM simulations largely reproduce the main characteristics of the regional wind systems (Mediterranean and Dead Sea breeze, slope winds in the Judean Mountains and winds along the Jordan Rift valley), whereas ERA‐5 is only able to represent the Mediterranean Sea breeze. The high‐resolution simulations substantially improve the representation of regional winds, particularly over complex orography. Indeed, the 2.8 km simulation outperforms the 7.0 km run, on 88% of the days. Two mid‐July 2015 case studies show that only the 2.8 simulation can realistically simulate the penetration of the Mediterranean Sea Breeze into the Jordan Rift valley and complex interactions with other wind systems like the Dead Sea breeze. Our results may have profound implications for regional weather and climate prediction since very high‐resolution information seems to be necessary to reproduce the main summertime climatic features in this region. We envisage that such simulations may also be required at other regions with complex orography.
    Description: In this paper we show that COSMO‐CLM regional climate model simulations at 7.0 (CLM‐7.0) and 2.8km (CLM‐2.8) resolution can realistically reproduce near‐surface regional and local wind systems over the complex orography of the eastern Mediterranean as opposite to coarser resolutions (ERA‐5, 31 km). The Mediterranean and local Dead Sea breezes, slope winds over the Judean Mountains, and winds along the Jordan Rift valley are well represented both climatologically and on individual days. CLM‐2.8 captures the small‐scale variability of the wind field better than CLM‐7.0 particularly near the Dead Sea and on 88% of the days CLM‐2.8 represents wind speed even more realistically than CLM‐7.0. image
    Description: German Helmholtz Association (“Changing Earth” program)
    Description: AXA Research Fund http://dx.doi.org/10.13039/501100001961
    Description: Ministry of Science, Research and Arts
    Description: Helmholtz Association of German Research Centers
    Keywords: ddc:551.6 ; complex orography ; convection permitting ; COSMO‐CLM ; Dead Sea ; eastern Mediterranean ; grid spacing ; regional climate modelling ; sea breeze
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-04-25
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Dansgaard‐Oeschger (D‐O) climate variability during the last glaciation was first evidenced in ice cores and marine sediments, and is also recorded in various terrestrial paleoclimate archives in Europe. The relative synchronicity across Greenland, the North Atlantic and Europe implies a tight and fast coupling between those regions, most probably effectuated by an atmospheric transmission mechanism. In this study, we investigated the atmospheric changes during Greenland interstadial (GI) and stadial (GS) phases based on regional climate model simulations using two specific periods, GI‐10 and GS‐9 both around 40 ka, as boundary conditions. Our simulations accurately capture the changes in temperature and precipitation as reconstructed by the available proxy data. Moreover, the simulations depict an intensified and southward shifted eddy‐driven jet during the stadial period. Ultimately, this affects the near‐surface circulation toward more southwesterly and cyclonic flow in western Europe during the stadial period, explaining much of the seasonal climate variability recorded by the proxy data, including oxygen isotopes, at the considered proxy sites.〈/p〉
    Description: Plain Language Summary: The climate during the last ice age varied between colder and warmer periods on timescales ranging from hundreds to thousands of years. This variability was first detected in Greenland ice cores and marine sediment cores of the North Atlantic, as well as in continental geological records in Europe. The variation between the colder and warmer periods occur mostly simultaneously in Greenland and in Europe, which is why the atmosphere is assumed to have an important role in transferring the climate signals. We simulated two different periods of the last ice age, one colder and one warmer around 40,000 years ago, using a regional climate model. The aim was to study how the climate and atmospheric circulation changed during these two periods. We find the eddy‐driven jet over the North Atlantic intensified and shifted southward during the colder period. The jet influences the near‐surface atmospheric circulation and leads to more southwesterly and cyclonic flow in western Europe. Oxygen isotope variations observed in western European paleoclimate records may be partly explained by different, more southern moisture sources on top of changes in seasonal temperatures.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉Simulated temperatures agree with proxy data; precipitation is biased but GI‐10 versus GS‐9 differences are well captured〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉The stadial winter jet stream is intensified and shifted southward, consistent with dominant southwesterly/cyclonic flow in western Europe〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Oxygen isotope signal changes at western European proxy sites may be explained not only by temperature but also by varying moisture sources〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: NRDIO
    Description: AXA Research Fund http://dx.doi.org/10.13039/501100001961
    Description: https://doi.org/10.5065/1dfh-6p97
    Keywords: ddc:551.6 ; Dansgaard‐Oeschger cycle ; regional atmospheric dynamics ; regional climate modeling ; continental paleoclimate proxy ; Europe
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-02-08
    Description: Forecasting and early warning systems are important investments to protect lives, properties and livelihood. While early warning systems are frequently used to predict the magnitude, location and timing of potentially damaging events, these systems rarely provide impact estimates, such as the expected amount and distribution of physical damage, human consequences, disruption of services or financial loss. Complementing early warning systems with impact forecasts has a two‐fold advantage: it would provide decision makers with richer information to take informed decisions about emergency measures, and focus the attention of different disciplines on a common target. This would allow capitalizing on synergies between different disciplines and boosting the development of multi‐hazard early warning systems. This review discusses the state‐of‐the‐art in impact forecasting for a wide range of natural hazards. We outline the added value of impact‐based warnings compared to hazard forecasting for the emergency phase, indicate challenges and pitfalls, and synthesize the review results across hazard types most relevant for Europe. Plain language summary Forecasting and early warning systems are important investments to protect lives, properties and livelihood. While such systems are frequently used to predict the magnitude, location and timing of potentially damaging events, they rarely provide impact estimates, such as the expected physical damage, human consequences, disruption of services or financial loss. Extending hazard forecast systems to include impact estimates promises many benefits for the emergency phase, for instance, for organising evacuations. We review and compare the state‐of‐the‐art of impact forcasting across a wide range of natural hazards, and outline opportunities and key challenges for research and development of impact forecasting.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...