GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-06-27
    Description: Coccolith assemblages of core MD00-2354 are used for reconstructing primary productivity in the northwestern Arabian Sea. The results cover the last 23,000 years. The attached data are original coccolith counting by using a polarized light microscope, and primary productivity. Counting result of each coccolith species is shown by the sum of counting number (n) in all fields of view. Primary productivity (gC m^-2 yr^-2) is calculated by an empirical equation that convert the percentage of lower euphotic zone species Florisphaera profunda to primary productivity. Details can be found in the related article.
    Keywords: 002(2bis); AGE; Calcidiscus leptoporus; Calciosolenia spp.; Calculated; CALYPSO; Calypso Corer; coccolith; Coccoliths; Coccolithus spp.; Counting; DEPTH, sediment/rock; Discosphaera spp.; Emiliania huxleyi; Eyepiece field of view; Florisphaera profunda; Gephyrocapsa oceanica; Gephyrocapsa spp., small; Helicosphaera spp.; IMAGES VI - ENCENS/SHEBA; Last Glacial Maximum; Marion Dufresne (1995); Mass; MD00-2354; MD117; northwestern Arabian Sea; Oolithotus spp.; Pontosphaera spp.; Primary production of carbon per area, yearly; primary productivity; Rhabdosphaera spp.; Syracosphaera spp.; Umbellosphaera spp.; Umbilicosphaera spp.
    Type: Dataset
    Format: text/tab-separated-values, 5700 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: The Last Glacial Maximum (LGM, ∼ 21 000 years ago) has been a major focus for evaluating how well state-of-the-art climate models simulate climate changes as large as those expected in the future using paleoclimate reconstructions. A new generation of climate models has been used to generate LGM simulations as part of the Paleoclimate Modelling Intercomparison Project (PMIP) contribution to the Coupled Model Intercomparison Project (CMIP). Here, we provide a preliminary analysis and evaluation of the results of these LGM experiments (PMIP4, most of which are PMIP4-CMIP6) and compare them with the previous generation of simulations (PMIP3, most of which are PMIP3-CMIP5). We show that the global averages of the PMIP4 simulations span a larger range in terms of mean annual surface air temperature and mean annual precipitation compared to the PMIP3-CMIP5 simulations, with some PMIP4 simulations reaching a globally colder and drier state. However, the multi-model global cooling average is similar for the PMIP4 and PMIP3 ensembles, while the multi-model PMIP4 mean annual precipitation average is drier than the PMIP3 one. There are important differences in both atmospheric and oceanic circulations between the two sets of experiments, with the northern and southern jet streams being more poleward and the changes in the Atlantic Meridional Overturning Circulation being less pronounced in the PMIP4-CMIP6 simulations than in the PMIP3-CMIP5 simulations. Changes in simulated precipitation patterns are influenced by both temperature and circulation changes. Differences in simulated climate between individual models remain large. Therefore, although there are differences in the average behaviour across the two ensembles, the new simulation results are not fundamentally different from the PMIP3-CMIP5 results. Evaluation of large-scale climate features, such as land–sea contrast and polar amplification, confirms that the models capture these well and within the uncertainty of the paleoclimate reconstructions. Nevertheless, regional climate changes are less well simulated: the models underestimate extratropical cooling, particularly in winter, and precipitation changes. These results point to the utility of using paleoclimate simulations to understand the mechanisms of climate change and evaluate model performance.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-10-27
    Description: The Maritime Continent (MC) forms the western boundary of the tropical Pacific Ocean, and relatively small changes in this region can impact the climate locally and remotely. In the mid-Piacenzian warm period of the Pliocene (mPWP; 3.264 to 3.025 Ma) atmospheric CO2 concentrations were ∼ 400 ppm, and the subaerial Sunda and Sahul shelves made the land–sea distribution of the MC different to today. Topographic changes and elevated levels of CO2, combined with other forcings, are therefore expected to have driven a substantial climate signal in the MC region at this time. By using the results from the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2), we study the mean climatic features of the MC in the mPWP and changes in Indonesian Throughflow (ITF) with respect to the preindustrial. Results show a warmer and wetter mPWP climate of the MC and lower sea surface salinity in the surrounding ocean compared with the preindustrial. Furthermore, we quantify the volume transfer through the ITF; although the ITF may be expected to be hindered by the subaerial shelves, 10 out of 15 models show an increased volume transport compared with the preindustrial. In order to avoid undue influence from closely related models that are present in the PlioMIP2 ensemble, we introduce a new metric, the multi-cluster mean (MCM), which is based on cluster analysis of the individual models. We study the effect that the choice of MCM versus the more traditional analysis of multi-model mean (MMM) and individual models has on the discrepancy between model results and data. We find that models, which reproduce modern MC climate well, are not always good at simulating the mPWP climate anomaly of the MC. By comparing with individual models, the MMM and MCM reproduce the preindustrial sea surface temperature (SST) of the reanalysis better than most individual models and produce less discrepancy with reconstructed sea surface temperature anomalies (SSTA) than most individual models in the MC. In addition, the clusters reveal spatial signals that are not captured by the MMM, so that the MCM provides us with a new way to explore the results from model ensembles that include similar models.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-04-29
    Description: While the influence of precession on monsoon at low latitudes through insolation forcing is well-known, the role of obliquity is still debated since its influence on the distribution of incoming solar radiation is small in these regions. In southern Africa, long marine and terrestrial sedimentary records attest of a precessional influence on the South African monsoon at orbital time scale. The obliquity signal is occasionally observed in the geological records although modeling results suggest an influence of precession and obliquity on summer monsoon. Here, we present a record of microscopic charcoal from core MD96-2098 located off Namibia covering the past 184,000 years. Our record of fire activity reveals cyclic changes at frequencies of 23, 58 and 12 kyr−1 and lacks the obliquity signal at 41 kyr−1. Changes in fire over southern Africa are interpreted as shifts in large and intense fires spreading in open-grassland savanna as a result of orbitally-driven changes in rainfall intensity associated with the South African monsoon. We show that, despite the absence of a 41 kyr obliquity imprint, the presence of 23, 58 and 12 kyr−1 frequencies likely stems from a nonlinear response of fire to precipitation controlled by a combination of precession and obliquity frequencies, supporting the influence of obliquity on the South African monsoon.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...