GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (25)
Document type
Keywords
Years
Year
  • 1
    Publication Date: 2023-01-04
    Description: Highlights: • Wind-PV power mix beneficial for balancing variability due to weather. • Ratio of 45–57% for PV over PV plus wind power maximises balancing effects. • Simultaneous extremes in wind and PV power occur on less than 10% of the days. Abstract: The increasing use of wind and solar power requires interventions to balance the associated variability in energy production. One option to reduce the costly interventions is to exploit the natural de-correlation of wind and irradiance. This study characterises the balancing potential of the natual variability in wind and photovoltaic energy production within and across eleven European countries. We use 20 years of highly resolved meteorological data from a post-processed regional reanalysis with a 6 km horizontal grid to calculate daily photovoltaic and wind power. Our results suggest a country-dependent reduction of the day-to-day variability in energy production by 29%–42% due to installing both PV and wind power capacities, compared to wind power only. The optimized photovoltaic to photovoltaic plus wind power generation ratios are 45–57% for maximizing balancing effects associated with the changing weather. We further identify on less than 10% of the days a simultaneous occurrence of extremes in photovoltaic and wind power across European countries. The cross-border balancing potentials for the extremes in renewable energy production are therefore high due to the spatio-temporal differences of the local weather.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-01-25
    Description: Two airborne field campaigns focusing on observations of Arctic mixed-phase clouds and boundary layer processes and their role with respect to Arctic amplification have been carried out in spring 2019 and late summer 2020 over the Fram Strait northwest of Svalbard. The latter campaign was closely connected to the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition. Comprehensive datasets of the cloudy Arctic atmosphere have been collected by operating remote sensing instruments, in-situ probes, instruments for the measurement of turbulent fluxes of energy and momentum, and dropsondes on board the AWI research aircraft Polar 5. In total, 24 flights with 111 flight hours have been performed over open ocean, the marginal sea ice zone, and sea ice. The datasets follow documented methods and quality assurance and are suited for studies on Arctic mixedphase clouds and their transformation processes, for studies with a focus on Arctic boundary layer processes, and for satellite validation applications. All datasets are freely available via the world data center PANGAEA.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-09-15
    Description: Distinct events of warm and moist air intrusions (WAIs) from mid-latitudes have pronounced impacts on the Arctic climate system. We present a detailed analysis of a record-breaking WAI observed during the MOSAiC expedition in mid-April 2020. By combining Eulerian with Lagrangian frameworks and using simulations across different scales, we investigate aspects of air mass transformations via cloud processes and quantify related surface impacts. The WAI is characterized by two distinct pathways, Siberian and Atlantic. A moist static energy transport across the Arctic Circle above the climatological 90th percentile is found. Observations at research vessel Polarstern show a transition from radiatively clear to cloudy state with significant precipitation and a positive surface energy balance (SEB), i.e., surface warming. WAI air parcels reach Polarstern first near the tropopause, and only 1–2 days later at lower altitudes. In the 5 days prior to the event, latent heat release during cloud formation triggers maximum diabatic heating rates in excess of 20 K d-1. For some poleward drifting air parcels, this facilitates strong ascent by up to 9 km. Based on model experiments, we explore the role of two key cloud-determining factors. First, we test the role moisture availability by reducing lateral moisture inflow during the WAI by 30%. This does not significantly affect the liquid water path, and therefore the SEB, in the central Arctic. The cause are counteracting mechanisms of cloud formation and precipitation along the trajectory. Second, we test the impact of increasing Cloud Condensation Nuclei concentrations from 10 to 1,000 cm-3 (pristine Arctic to highly polluted), which enhances cloud water content. Resulting stronger longwave cooling at cloud top makes entrainment more efficient and deepens the atmospheric boundary layer. Finally, we show the strongly positive effect of the WAI on the SEB. This is mainly driven by turbulent heat fluxes over the ocean, but radiation over sea ice. The WAI also contributes a large fraction to precipitation in the Arctic, reaching 30% of total precipitation in a 9-day period at the MOSAiC site. However, measured precipitation varies substantially between different platforms. Therefore, estimates of total precipitation are subject to considerable observational uncertainty.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-04-23
    Description: With the Arctic rapidly changing, the needs to observe, understand, and model the changes are essential. To support these needs, an annual cycle of observations of atmospheric properties, processes, and interactions were made while drifting with the sea ice across the central Arctic during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition from October 2019 to September 2020. An international team designed and implemented the comprehensive program to document and characterize all aspects of the Arctic atmospheric system in unprecedented detail, using a variety of approaches, and across multiple scales. These measurements were coordinated with other observational teams to explore cross- cutting and coupled interactions with the Arctic Ocean, sea ice, and ecosystem through a variety of physical and biogeochemical processes. This overview outlines the breadth and complexity of the atmospheric research program, which was organized into 4 subgroups: atmospheric state, clouds and precipitation, gases and aerosols, and energy budgets. Atmospheric variability over the annual cycle revealed important influences from a persistent large-scale winter circulation pattern, leading to some storms with pressure and winds that were outside the interquartile range of past conditions suggested by long-term reanalysis. Similarly, the MOSAiC location was warmer and wetter in summer than the reanalysis climatology, in part due to its close proximity to the sea ice edge.The comprehensiveness of the observational program for characterizing and analyzing atmospheric phenomena is demonstrated via a winter case study examining air mass transitions and a summer case study examining vertical atmospheric evolution. Overall, the MOSAiC atmospheric program successfully met its objectives and was the most comprehensive atmospheric measurement program to date conducted over the Arctic sea ice. The obtained data will support a broad range of coupled-system scientific research and provide an important foundation for advancing multiscale modeling capabilities in the Arctic.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-05-07
    Description: CO2 release from thawing permafrost is both a consequence of, and a driver for, global warming, making accurate information on the Arctic carbon cycle essential for climate predictions. Eddy covariance data obtained from Bayelva (Svalbard) in 2015, using well‐established processing and quality control techniques, indicate that most of the annual net CO2 uptake is due to high CO2 flux events in winter that are associated with strong winds and probably relate to technical limitations of the gas analyzer. Emission events may relate to either (unidentified) instrumental limitations or to physical processes such as CO2 advection. Excluding the high winter uptake events yields an annual CO2 budget close to zero; whether or not these events are included can, therefore, have a considerable effect on carbon budget calculations. Further investigation will be crucial to pinpoint the factors causing these high CO2 flux events and to derive scientifically substantiated flux processing standards.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-04-20
    Description: The data set contains daily files of atmospheric radiation measured by the MiRAC-P (or LHUMPRO-243-340) microwave radiometer (see Mech et al., 2019) onboard the Polarstern during cruise PS122 (MOSAiC expedition). The data covers the range October 2019 to October 2020. The atmospheric radiation measurements are given as brightness temperatures in six double side band averaged G band (183.31 +/- 0.6 to 183.31 +/- 7.5 GHz) and two higher frequency (243 and 340 GHz) channels. The brightness temperatures are provided for all available times so that it is up to the user to decide whether or not to use the values if quality flags are set. Additionally included are temperature, pressure and humidity measurements at the instrument location as well as quality flags characterizing the instrument and retrieval performance.
    Keywords: AC3; Arctic; Arctic Amplification; Arctic Ocean; ATMOBS; Atmospheric Observatory; Binary Object; Binary Object (File Size); brightness temperature; DATE/TIME; Event label; LATITUDE; LONGITUDE; microwave radiometer; Mosaic; MOSAiC; MOSAiC20192020; Multidisciplinary drifting Observatory for the Study of Arctic Climate; North Greenland Sea; Other event; Polarstern; PS122; PS122/1; PS122/1_1-38; PS122/2; PS122/2_14-18; PS122/3; PS122/3_28-6; PS122/4; PS122/4_43-11; PS122/4_43-145; PS122/5; PS122/5_58-3; remote sensing
    Type: Dataset
    Format: text/tab-separated-values, 346 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-04-20
    Description: This data set unites the individual data of the MOSAiC Airborne observations in the Central Arctic (MOSAiC-ACA) campaign, carried out in late summer 2020 northwest of Svalbard (Norway). The objective of MOSAiC-ACA was to study turbulent fluxes of energy and momentum in the Arctic boundary layer and low- and mid-level mixed-phase clouds and their role in Arctic amplification in the exit area of the research vessel Polarstern during the MOSAiC expedition. The research aircraft Polar 5 was equipped with active and passive remote sensing instruments, measurements for turbulent and radiative energy fluxes, insitu probes for cloud and aerosol particles, and dropsondes. In total, 10 research flights with 44 flight hours over the open ocean and the marginal sea ice zone have been performed between 30 August and 13 September 2020.
    Keywords: AC3; airborne; Arctic; Arctic Amplification; In situ; MOSAiC; MOSAiC-ACA; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polar 5; remote sensing; Svalbard
    Type: Dataset
    Format: 13 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-04-20
    Description: This data set unites the individual data of the Airborne measurements of radiative and turbulent FLUXes of energy and momentum in the Arctic boundary layer (AFLUX) campaign, carried out in spring northwest of Svalbard (Norway). The objective of AFLUX was to study turbulent fluxes of energy and momentum in the Arctic boundary layer and low- and mid-level mixed-phase clouds and their role in Arctic amplification. The research aircraft Polar 5 was equipped with active and passive remote sensing instruments, measurements for turbulent and radiative energy fluxes, insitu probes for cloud and aerosol particles, and dropsondes. In total, 14 research flights with 67 flight hours over the open ocean and the marginal sea ice zone have been performed between 19 March and 11 April 2019.
    Keywords: AC3; AFLUX; airborne; Arctic; Arctic Amplification; In situ; Polar 5; remote sensing; Svalbard
    Type: Dataset
    Format: 12 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-04-20
    Description: The Halo Microwave Package (HAMP), deployed onboard the High Altitude and LOng range research aircraft (HALO), performed measurements over the Arctic ocean and sea-ice during the HALO-(AC)³ campaign in March and April 2022. After the transfer flight (RF01) from Oberpfaffenhofen (Germany), 17 research flight (RF) days started from Kiruna, Sweden and heading northwards to the Fram Strait and central Arctic. Here, HAMP measurements were taken in different weather conditions comprising high impact synoptic events such as warm air intrusions, atmospheric rivers, cold air outbreaks or polar lows. We provide a dataset of active and passive microwave HAMP measurements, i.e. from the cloud and precipitation radar and the radiometers respectively. The radar operates at a frequency of 35 GHz while the microwave radiometer measurements comprise 25 channels in the frequency range between 22 and 190 GHz. Our dataset delivers time-series of brightness temperatures from the radiometers, and the radar reflectivity factor and linear depolarization ratio from the radar in a unified format. The unified and processed dataset provides the post-calibrated and quality-controlled measurements from both devices in a collocated temporal 1 Hz resolution applicable for joint analysis. An adherent surface mask distinguishes between three predominant overpassed surface types (land, sea, and sea-ice). The radar measurements are further unified in a vertical grid having 30 m resolution. Our unified dataset allows for wide-spread analysis of evolving arctic cloud and moisture properties over the remote Arctic ocean.
    Keywords: AC; AC3; Airborne Data; Aircraft; Arctic Amplification; Arctic clouds; Atmospheric and Earth System Research with HALO – High Altitude and Long Range Research Aircraft; Date/Time of event; Event label; HALO; HALO_220311a; HALO_220312a; HALO_220313a; HALO_220314a; HALO_220315a; HALO_220316a; HALO_220320a; HALO_220321a; HALO_220328a; HALO_220329a; HALO_220330a; HALO_220401a; HALO_220404a; HALO_220407a; HALO_220408a; HALO_220410a; HALO_220411a; HALO_220412a; HALO_AC3; HALO-(AC)³; Image; microwave radiometer; Microwave Radiometer; MRA; netCDF file; radar; Radar; RF01; RF02; RF03; RF04; RF05; RF06; RF07; RF08; RF09; RF10; RF11; RF12; RF13; RF14; RF15; RF16; RF17; RF18; SPP1294
    Type: Dataset
    Format: text/tab-separated-values, 72 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-04-20
    Description: The data set contains daily files of path integrated amount of water vapour (precipitable water, prw) derived from the MiRAC-P (or LHUMPRO-243-340) microwave radiometer (see Mech et al., 2019) onboard the Polarstern during cruise PS122 (MOSAiC expedition). The data covers the range October 2019 to October 2020. MiRAC-P measures atmospheric radiation in six double side band averaged G band (183.31 +/- 0.6 to 183.31 +/- 7.5 GHz) and two higher frequency (243 and 340 GHz) channels. The different sensitivity to humidity of the channels allow a derivation of the path integrated amount of water vapour (prw). A Neural Network retrieval has been used to derive prw. The uncertainty of prw is given as the variable's comment attribute and describes the expected standard error. Prw is provided for all available times so that it is up to the user to decide whether or not to use the values if quality flags are set.
    Keywords: AC3; Arctic; Arctic Amplification; Arctic Ocean; ATMOBS; Atmospheric Observatory; Binary Object; Binary Object (File Size); DATE/TIME; Event label; integrated water vapor; LATITUDE; LONGITUDE; microwave radiometer; Mosaic; MOSAiC; MOSAiC20192020; Multidisciplinary drifting Observatory for the Study of Arctic Climate; North Greenland Sea; Other event; Polarstern; precipitable water; PS122; PS122/1; PS122/1_1-38; PS122/2; PS122/2_14-18; PS122/3; PS122/3_28-6; PS122/4; PS122/4_43-11; PS122/4_43-145; PS122/5; PS122/5_58-3; remote sensing
    Type: Dataset
    Format: text/tab-separated-values, 346 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...