GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Plant hormones. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (317 pages)
    Edition: 1st ed.
    ISBN: 9783030774776
    Series Statement: Plant in Challenging Environments Series ; v.2
    DDC: 571.742
    Language: English
    Note: Intro -- Preface -- Contents -- Chapter 1: Plant Hormones and Plant Defense Response Against Pathogens -- 1.1 Perception and Signal Transduction: The Apoplastic Crosstalk -- 1.2 Cell Signaling: Perception of Danger Signal -- 1.2.1 Effectors and Receptors -- 1.2.2 Signal Transduction Pathways -- 1.3 Nitric Oxide, Hydrogen Peroxide and Melatonin as Mediators for Defense Responses -- 1.4 Phytohormones in Pathogen Resistance: Roles and Network -- 1.4.1 Salicylic Acid (SA) -- 1.4.2 Jasmonates (JA), Ethylene (ET) and Polyamines -- 1.4.3 Cytokinins (CK) -- 1.4.4 Auxin -- 1.4.5 Brassinosteroids (BRs) -- 1.4.6 Gibberellins (GAs) -- 1.5 Genome Editing Tools: CRISPR/Cas Technology as New Approach to Improve Crop Resistance -- 1.6 Conclusion -- References -- Chapter 2: Plant Hormones and Nutrient Deficiency Responses -- 2.1 Introduction -- 2.2 Experimental Techniques Used to Study the Role of Hormones in the Regulation of Nutrient Deficiency Responses -- 2.2.1 Hormone Measurements -- 2.2.2 Exogenous Application of Hormones, their Precursors and Inhibitors -- 2.2.3 Use of Mutants Altered in the Regulation of Responses -- 2.2.4 Use of Hormone Mutants -- 2.2.5 Split-Root Experiments -- 2.2.6 Use of Reciprocally Grafted Plants Between WT and Mutants or Transgenic Lines Altered in the Regulation of Responses -- 2.2.7 Use of Detopped Plants, Girdled Plants or Foliar Application of Nutrients and Other Compounds -- 2.2.8 Molecular Techniques (Transcriptomic, Proteomic, Metabolomic, Y2H, BiFC, …) -- 2.3 Nutrient Deficiency Responses -- 2.3.1 General Adaptive Responses -- 2.3.1.1 Shoot-Root Growth Alterations/TOR/SnRKs -- 2.3.1.2 Recycling/Authophagy -- 2.3.1.3 Substitution -- 2.3.2 Specific Responses -- 2.3.2.1 Physiological Responses -- 2.3.2.2 Morphological Responses -- 2.4 Sensors and Transceptors. , 2.5 Role of Hormones in the Regulation of Nutrient Deficiency Responses -- 2.5.1 Role of Hormones on General Adaptive Responses -- 2.5.1.1 Role of Hormones on Shoot-Root Growth Alterations/TOR/SnRKs -- 2.5.1.2 Role of Hormones on Recycling/Authophagy -- 2.5.2 Role of Hormones on Specific Responses -- 2.5.2.1 Role of Hormones on Physiological Responses -- 2.5.2.2 Role of Hormones on Morphological Responses -- 2.6 Crosstalk Between Different Hormones, and Between Hormones and Other Signaling Substances -- 2.7 Concluding Remarks and Future Perspectives -- References -- Chapter 3: Seed Germination: Explicit Crosstalk Between Hormones and ROS -- 3.1 Introduction -- 3.2 Seed Germination: First Sign of Perceptible Growth and Hormonal Interplay -- 3.3 ROS, an Inevitable Player - Signaling and/or Direct Action in Growth -- 3.4 Cross-Talk Between Hormone and ROS During Seed Germination -- 3.5 ROS - PM H+-ATPase - Hormones: Extension of the Signaling Network -- 3.6 Reactive Nitrogen Species (RNS): Another Potential Candidate to Play for Signaling -- 3.7 Conclusion -- References -- Chapter 4: Hormones and Light-Regulated Seedling Development -- 4.1 Light-Regulated Responses During Seedling Development -- 4.2 Light Perception and Signaling in Plants -- 4.2.1 Perception of Light Signals -- 4.2.1.1 Perception of Red and Far-Red Lights -- 4.2.1.2 Perception of Blue Light -- 4.2.1.3 Perception of UV-B Light -- 4.2.2 Transcriptional Hubs Regulating Light-Mediated Changes in Gene Expression -- 4.3 Hormonal Regulation of Dark-Adapted Seedling Growth Beneath the Soil -- 4.4 Hormones Mediate Light-Induced Opening and Expansion of Cotyledons -- 4.5 Regulation of Chlorophyll and Anthocyanin Accumulation by Hormones -- 4.6 Hormones Control Hypocotyl Growth Under Light -- 4.7 Hormonal Regulation of Phototropism and Shade Avoidance Response -- 4.8 Conclusion -- References. , Chapter 5: Light-Mediated Regulation of Plant Hormone Metabolism -- 5.1 Initial Considerations -- 5.2 A Brief Update on Light Signaling in Higher Plants -- 5.3 Mechanistic Links Between Light Perception and Hormone Metabolism in Higher Plants: A Wide Spectrum of Possibilities -- 5.3.1 Light and Auxin Metabolism -- 5.3.2 Light and Gibberellin Metabolism -- 5.3.3 Light and Abscisic Acid Metabolism -- 5.3.4 Light and Cytokinin Metabolism -- 5.3.5 Light and Ethylene Metabolism -- 5.3.6 Light and Brassinosteroid Metabolism -- 5.4 Concluding Remarks -- References -- Chapter 6: Hormones in Photoperiodic Flower Induction -- 6.1 Introduction -- 6.2 Photoperiodic Induction of Flowering -- 6.3 The Effect of Hormones on the Induction of Flowering of Plants with Different Photoperiodic Requirements -- 6.4 Effect of Photoperiod on Hormone Metabolism and Signal Transduction Pathways During Generative Induction -- 6.5 Mechanisms of Hormone Action During Photoperiodic Induction of Flowering -- 6.6 Interactions of Hormones in the Regulation of Flowering Induction in Ipomoea nil -- 6.7 Summary -- References -- Chapter 7: Recent Insights into Auxin-Mediated Molecular Cross Talk Events Associated with Regulation of Root Growth and Architecture During Abiotic Stress in Plants -- 7.1 Introduction -- 7.2 Regulation of Root Architecture -- 7.3 Auxin Efflux Carriers Coordinate Auxin Distribution in Roots During Abiotic Stress -- 7.4 Abiotic-Stress Induced Regulation of Auxin Homoeostasis in Roots -- 7.5 NO and JA Precisely Regulate Root Development by Acting Through Auxin-Mediated Signaling Pathway -- 7.6 ABA and Ethylene Crosstalk Integrates Auxin Signalling in Plant Roots During Osmotic Stress -- 7.7 Hydrogen Sulphide and Indoleamine-Mediated Auxin Signalling in Roots -- 7.8 Concluding Remarks and Future Perspectives -- References. , Chapter 8: Abscisic Acid and Fruit Ripening: Its Role in Grapevine Acclimation to the Environment, a Case of Study -- 8.1 ABA Biochemistry -- 8.2 ABA Physiology -- 8.3 Relevance of ABA in the Physiology of Fruit Ripening -- 8.4 ABA and Grapevine -- 8.5 Conclusions Regarding Grapevines and ABA -- References -- Chapter 9: Biosynthesis and Molecular Mechanism of Brassinosteroids Action -- 9.1 Introduction -- 9.2 Chemical Structure of Brassinosteroids -- 9.3 Metabolism of Brassinosteroids -- 9.4 Brassinosteroids Biosynthesis Pathways -- 9.4.1 Early Steps of Brassinosteroids Biosynthesis -- 9.4.2 Biosynthesis of C27-Brassinosteroids -- 9.4.3 Biosynthesis of C28-Brassinosteroids -- 9.4.4 Biosynthesis of C29-Brassinosteroids -- 9.4.5 Inhibitors of Brassinosteroid Biosynthesis -- 9.5 Signal Transduction of Brassinosteroids -- 9.5.1 Structure of BRI1/BAK1 Receptors -- 9.5.2 Brassinosteroids' Crosstalk with Other Phytohormones -- 9.6 Conclusions and Future Perspectives -- References -- Chapter 10: Regulatory Role of Melatonin in the Redox Network of Plants and Plant Hormone Relationship in Stress -- 10.1 Introduction -- 10.2 Metabolism of ROS and RNS -- 10.3 Melatonin and ROS/RNS -- 10.4 Melatonin in the ROS/RNS Network in Plants -- 10.5 Melatonin and Gene Regulation in the Redox Network -- 10.6 Melatonin and Plant Hormone Relationship -- 10.6.1 Auxin -- 10.6.2 Gibberellin, Abscisic Acid and Cytokinins -- 10.6.3 Ethylene -- 10.6.4 Salicylic Acid and Jasmonic Acid -- 10.6.5 Brassinosteroids, Polyamines and Strigolactones -- 10.7 Conclusions -- References -- Chapter 11: Tryptophan: A Precursor of Signaling Molecules in Higher Plants -- 11.1 Introduction -- 11.2 Tryptophan Is Generated in the Shikimate (Chorismate) Pathway -- 11.2.1 Auxin, Indole-3-Acetic Acid (IAA) -- 11.2.2 Serotonin (5-Hydroxytryptamine, 5-HT) -- 11.2.3 Melatonin (N-Acetyl-5-Methoxytryptamine). , 11.2.3.1 Abiotic Stress -- 11.2.3.2 Fruit Ripening and Postharvest -- 11.3 Conclusions and Future Perspectives -- References -- Chapter 12: GABA and Proline Metabolism in Response to Stress -- 12.1 Introduction -- 12.2 Biosynthesis and Degradation of GABA in Plants -- 12.3 Proline Metabolism in Plants -- 12.4 GABA and Proline Involvement in Abiotic Stresses Responses -- 12.5 GABA and Proline Responses in Plants Under Biotic Stresses -- 12.6 Potential Functions of GABA in Plant Response to Abiotic and Biotic Stress -- 12.7 Potential Functional Implications of Proline in Plants Under Stress -- 12.8 Potential Links Between GABA and Proline Metabolism and Hormone Signalling -- 12.9 Upcoming Challenges for the Understanding of Proline and GABA Contributions to Stress Tolerance in Plants -- References.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Plants-Effect of hydrogen sulfide on. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (241 pages)
    Edition: 1st ed.
    ISBN: 9783030736781
    Series Statement: Plant in Challenging Environments Series ; v.1
    DDC: 581.7
    Language: English
    Note: Intro -- Preface -- Contents -- Chapter 1: Hydrogen Sulfide on the Crossroad of Regulation, Protection, Interaction and Signaling in Plant Systems Under Different Environmental Conditions -- 1.1 Introduction -- 1.2 Biosynthesis and Role of H2S in Plant System -- 1.3 H2S and Regulation of Physiological Processes in Plants -- 1.4 H2S and Protection of Plants Under Stress -- 1.5 H2S Signaling and Interaction in Plants -- 1.6 Conclusion -- References -- Chapter 2: Hydrogen Sulfide: A Road Ahead for Abiotic Stress Tolerance in Plants -- 2.1 Introduction -- 2.2 Biosynthesis of H2S in Plants -- 2.3 Physiological Functions of H2S in Plants -- 2.4 Effect of H2S on Plants Under Salt Stress -- 2.5 Response of Plants to H2S Under Drought Stress -- 2.6 Effect of H2S Under Heavy Metal Stress -- 2.7 Effect of H2S Under Temperature Stress -- 2.7.1 Low Temperature Stress -- 2.7.2 High Temperature Stress -- 2.8 Conclusion -- References -- Chapter 3: Functional Interaction of Hydrogen Sulfide with Nitric Oxide, Calcium, and Reactive Oxygen Species Under Abiotic Stress in Plants -- 3.1 Introduction -- 3.2 Biosynthesis of H2S in Plants -- 3.3 Changes in Endogenous Level of H2S in Plants in Response to Stresses -- 3.3.1 Low Temperature Stress and H2S -- 3.3.2 High Temperature Stress and H2S -- 3.3.3 Dehydration Stress and H2S -- 3.3.4 Salt Stress and H2S -- 3.3.5 Heavy Metals (HMs) and H2S -- 3.4 Functional Interactions of H2S with Ca2+ Ions -- 3.5 Crosstalk of H2S with ROS -- 3.6 H2S and NO as Interdependent Signal Mediators -- 3.7 Functional Interaction of H2S with Other Signal Mediators During Adaptive Reactions in Plants -- 3.8 Conclusions -- References -- Chapter 4: Hydrogen Sulfide and Redox Homeostasis for Alleviation of Heavy Metal Stress -- 4.1 Introduction -- 4.2 Metabolism of H2S in Plants -- 4.3 Role of H2S in Alleviating Heavy Metal Stress. , 4.3.1 Abrogation of Al Toxicity in Plants by H2S Application -- 4.3.2 Abrogation of Cd Toxicity in Plants by H2S Application -- 4.3.3 Mitigation of As Toxicity in Plants by H2S Application -- 4.3.4 Mitigation of Cr Toxicity in Plants by H2S Application -- 4.3.5 Mitigation of Cu Toxicity in Plants by H2S Application -- 4.3.6 Mitigation of Other Heavy Metal Toxicity in Plants by H2S Application -- 4.4 Conclusion and Future Perspectives -- References -- Chapter 5: Effect of Hydrogen Sulfide on Osmotic Adjustment of Plants Under Different Abiotic Stresses -- 5.1 Introduction -- 5.2 Metabolism of H2S in Plants -- 5.3 Roles of H2S in Different Forms of Abiotic Stresses -- 5.3.1 Drought Stress -- 5.3.2 Salt Stress -- 5.3.3 Temperature Stress -- 5.3.4 Heavy Metal Stress -- 5.3.5 Other Forms of Stress -- 5.4 Conclusion and Future Perspectives -- References -- Chapter 6: Hydrogen Sulfide and Stomatal Movement -- 6.1 Introduction -- 6.2 Hydrogen Sulfide and Abscisic Acid in Plants Under Drought and Salinity -- 6.3 Hydrogen Sulfide and Light -- 6.3.1 Blue Light -- 6.3.2 Red Light -- 6.3.3 UV-B -- 6.4 Stomatal Conductance and CO2 -- 6.5 Stomatal Conductance and Plant Growth Under Ozone Exposure -- 6.6 Conclusion and Perspectives -- References -- Chapter 7: Hydrogen Sulfide and Fruit Ripening -- 7.1 Introduction -- 7.2 How H2S Is Endogenously Generated in Plant Cells? -- 7.3 Endogenous H2S Metabolism during Fruit Ripening and Potential Beneficial Effects of the Exogenous H2S Application During Postharvest -- 7.4 Conclusion and Future Perspectives -- References -- Chapter 8: Hydrogen Sulfide Impact on Seed Biology Under Abiotic Stress -- 8.1 Introduction -- 8.2 Hydrogen Sulfide Metabolism in Seeds -- 8.3 Hydrogen Sulfide and Germination Capacity -- 8.4 Molecular Mechanisms Controlled by H2S in Germinating Seeds. , 8.4.1 Interplay with ROS, Nitric Oxide, and Antioxidant Defense -- 8.4.2 H2S and Seed Metabolism -- 8.4.3 H2S and Hormone Signaling in the Regulation of Seed Germination -- 8.5 Concluding Remarks and Open Questions -- References -- Chapter 9: Hydrogen Sulfide Signaling in the Defense Response of Plants to Abiotic Stresses -- 9.1 Introduction -- 9.2 Stress by Metals -- 9.3 Salt Stress -- 9.4 Water Stress -- 9.5 Temperature Stress -- 9.6 Interplay Among H2S, Plant Hormones, and Secondary Messengers -- 9.7 Conclusions -- References -- Chapter 10: A Transcriptomic and Proteomic View of Hydrogen Sulfide Signaling in Plant Abiotic Stress -- 10.1 Introduction -- 10.2 Participation of H2S, Polysulfides, and Reactive Sulfur Species in Stress Signaling -- 10.3 The H2S Signaling Network Seen Through Transcriptomics and Proteomics -- 10.3.1 H2S and the Plant-Stress Proteome -- 10.3.2 H2S and the Plant-Stress Transcriptome -- 10.4 Conclusion -- References -- Chapter 11: Cysteine and Hydrogen Sulfide: A Complementary Association for Plant Acclimation to Abiotic Stress -- 11.1 Introduction -- 11.2 Homeostasis of Cys and H2S -- 11.2.1 Regulation of Cys Homeostasis -- 11.2.2 Regulation of H2S Homeostasis -- 11.3 Involvement of H2S and Cys in Plant Adaptive Responses to Abiotic Stresses -- 11.4 Mode of Action of H2S and Cys Under Abiotic Stresses -- 11.4.1 Mode of Action of H2S in Abiotic Stress Tolerance of Plants -- 11.4.1.1 Interaction of H2S with Other Signaling Molecules -- 11.4.1.2 H2S and Persulfidation -- 11.4.2 Mode of Action of Cys in Abiotic Stress Tolerance of Plants -- 11.4.2.1 Cys and Glutathione in the Cellular Redox Homeostasis -- 11.4.2.2 Cys and Phytochelatins -- 11.4.2.3 Cys and Metallothioneins -- 11.5 Conclusions -- References -- Chapter 12: Hydrogen Sulfide and Posttranslational Modification of Proteins: A Defense Strategy Against Abiotic Stress. , 12.1 Introduction -- 12.2 Protein Persulfidation and Detection Methods in Plants -- 12.3 Protein Persulfidation and H2S in Plants -- 12.4 Protein Persulfidation in Plant Adaptive Responses to Abiotic Stress -- 12.4.1 Antioxidant Defense System -- 12.4.2 Autophagy -- 12.4.3 Stomatal Closure -- 12.5 The Crosstalk of H2S with Other Signaling Molecules and Protein Persulfidation -- 12.5.1 Crosstalk of H2S and NO in Relation to Persulfidation -- 12.5.2 Crosstalk of H2S and ROS in Relation to Persulfidation -- 12.6 Conclusions and Future Perspectives -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Keywords: Botany. ; Plants. ; Botanical chemistry. ; Stress (Physiology).
    Description / Table of Contents: Preface -- I. Melatonin as an antioxidant -- Chapter 1. Melatonin and the metabolism of reactive oxygen species (ROS) in higher plants -- II. Melatonin, biosynthesis, plant growth, development and reproduction -- Chapter 2. Melatonin in Plants: Biosynthesis, Occurrence and Role in plants -- Chapter 3. Abiotic stress-induced modulation of melatonin biosynthesis accompanying phytohormonal crosstalk in plants -- Chapter 4. Role of melatonin in embryo, seed development and germination -- Chapter 5. Melatonin metabolism in seeds: physiological and nutritive aspects -- Chapter 6. Melatonin in plant growth and signaling -- Chapter 7. Functions and prospects of melatonin during pre-fertilization reproductive stages in plants -- Chapter 8. Melatonin and fruit ripening physiology: crosstalk with ethylene, nitric oxide, hydrogen peroxide and hydrogen sulfide -- Chapter 9. Melatonin and postharvest biology of fruits and vegetables: augmenting the endogenous molecule by exogenous application -- Chapter 10. Melatonin language in postharvest life of horticultural crops -- III. Melatonin and its signaling in biotic and abiotic stress -- Chapter 11. Melatonin-mediated regulation of biotic stress responses in plants -- Chapter 12. Emerging roles of melatonin in mitigating pathogen stress -- Chapter 13. Eco-physiological and morphological adaptive mechanisms induced by melatonin and hydrogen sulfide under abiotic stresses in plants -- Chapter 14. Melatonin in plants under UV stress conditions -- Chapter 15. Molecular physiology of melatonin induced temperature stress tolerance in plants -- Chapter 16. Melatonin-mediated salt tolerance in plants -- Chapter 17. Role of phytomelatonin in promoting ion homeostasis during salt stress -- Chapter 18. Positive regulatory role of melatonin in conferring drought resistance to plants -- Chapter 19. Potential, mechanism and molecular insight of melatonin in phytoremediation.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(IX, 386 p. 1 illus.)
    Edition: 1st ed. 2023.
    ISBN: 9783031401732
    Series Statement: Plant in Challenging Environments 4
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Keywords: Botany. ; Plant physiology. ; Botanical chemistry. ; Agriculture.
    Description / Table of Contents: Chapter 01: The Role of Gas Transmitters in Plant Hormonal Responses to Abiotic Stress -- Chapter 02: Understanding the involvement of gasotransmitters in the regulation of cellular signalling and adaptive responses against UV-B mediated oxidative stress in plants -- Chapter 03 Signaling Pathways of Gasotransmitters in Heavy Metal Stress Mitigation -- Chapter 04: Volatile signaling molecules in plants and their interplay with the redox balance under challenging environments: new insights -- Chapter 05: Alleviation of Plant Stress by Molecular Hydrogen -- Chapter 06: Understanding the role of nitric oxide and its interactive effects with phytohormones in mitigation of salinity stress -- Chapter 07 Nitric oxide – a small molecule with big impacts on plants under heavy metal stress -- Chapter 08: Nitric oxide: a key modulator of postharvest fruit and egetable physiology -- Chapter 09: Interaction of hydrogen sulfide with other phytohormones during physiological and stress conditions -- Chapter 10: Gasotransmitter hydrogen sulfide (H2S) and its role in plant development and defense responses -- Chapter 11 Hydrogen Sulfide (H2S) signaling in plants responding to abiotic stresses -- Chapter 12 Hydrogen sulfide metabolism and its role in regulating salt and drought stress in plants -- Chapter 13 Functional Roles of Hydrogen Sulphide in Postharvest Physiology of Fruit and Vegetables -- Chapter 14: Carbon compounds as gasotransmitters in plants under challenging environment -- Chapter 15: Carbon monoxide (CO) and its association with other gasotransmitters in root development, growth and signaling.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(VIII, 328 p. 1 illus.)
    Edition: 1st ed. 2023.
    ISBN: 9783031430299
    Series Statement: Plant in Challenging Environments 5
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...