GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (6)
Document type
Publisher
Language
Year
  • 1
    Publication Date: 2023-04-24
    Description: 3D gravity inversion has been widely used to infer density structures and tectonic movements of the Earth and Moon. However, two problems (the non-uniqueness and low depth-resolution) of current gravity inversion methods still exist and are not completely resolved, which affects the reliability of inversion results and corresponding geological interpretation. To improve the depth-resolution of the 3D gravity inversion, we propose an efficient inversion method in spherical coordinates based on a mixed smooth and focused regularization with depth weighting functions. In the inversion, we also employ the kernel matrix equivalence strategy and the fast kernel-vector multiplication method based on Fast Fourier Transform (FFT) in each iteration to increase computational efficiency. Two synthetic inversion examples show that the proposed method can recover more complex density structures compared with the often used smooth-constraint inversion approach. Finally, the proposed inversion approach is applied to the latest lunar gravitational field model GL1500E to study the 3D density structures of the Moscoviense basin. The inverted results indicate that the density structure with high-positive anomalies is principally distributed at depths ranging from 5 to 70 km, forming a giant asymmetrical high density structure inclining from the southwest to the northeast. We may conclude that the Moscoviense basin was formed by the double impact, where the second collision occurred in the southwest of the basin center of the first collision.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-03
    Description: The gravity anomalies reflect density perturbations at different depths, which control the physical state and dynamics of the lithosphere and sub-lithospheric mantle. However, the gravity effect of the crust masks the mantle signals. In this study, we develop two frameworks (correction with density contrasts and actual densities) to calculate the gravity anomalies generated by the layered crust. We apply the proposed approaches to evaluate the global mantle gravity disturbances based on the new crustal models. Consistent patterns and an increasing linear trend of the mantle gravity disturbances with lithospheric thickness and Vs velocities at 150 km depth are obtained. Our results indicate denser lithospheric roots in most cratons and lighter materials in the oceanic mantle. Furthermore, our gravity map corresponds well to regional geological features, providing new insights into mantle structure and dynamics. Specifically, (1) reduced anomalies associated with the Superior and Rae cratons indicate more depleted roots compared with other cratons of North America. (2) Negative anomalies along the Cordillera (western North America) suggest mass deficits owing to the buoyant hot mantle. (3) Positive anomalies in the Baltic, East European, and Siberian cratons support thick, dense lithosphere with significant density heterogeneities, which could result from thermo-chemical modifications of the cratonic roots. (4) Pronounced positive anomalies correspond to stable blocks, e.g., Arabian Platform, Indian Craton, and Tarim basin, indicating a thick, dense lithosphere. (5) Low anomalies in the active tectonic units and back-arc basins suggest local mantle upwellings. (6) The cold subducting/detached plates may result in the high anomalies observed in the Zagros and Tibet.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-19
    Description: Northeastern Eurasia is one of the least explored regions in the world. Very little geophysical data is available for this inaccessible area. Even the exact location of the plate boundary between Eurasia and North America remains a subject of ongoing debate. The effective elastic thickness (EET) of the lithosphere is a proxy for lithospheric strength and can provide insight into the thermal regime and tectonic processes. We have computed a high-resolution map of the EET for northeastern Eurasia using the fan wavelet coherence technique applied to the Bouguer gravity anomalies and topography/bathymetry data, appropriately adjusted to account for the influence of density variations within sediments. The results obtained provide insights into different tectonic regimes within this predominantly understudied region. In particular, we identify the boundary between the Eurasian and North American plates in Siberia as a rheologically weak diffusive zone extending from the Verkhoyansk and Sette-Daban Ranges to the eastern boundary of the Chersky Range. Unlike the Sette-Daban and Verkhoyansk Ranges, which were formed by plate collision and have an EET of 30–50 km, other mountainous regions have much lower EET values, usually less than 15 km. These areas have recently experienced tectonic activity that has weakened the lithosphere.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: Carbon capture and storage (CCS) is a key technology to reduce carbon dioxide (CO2) emissions from industrial processes in a feasible, substantial, and timely manner. For geological CO2 storage to be safe, reliable, and accepted by society, robust strategies for CO2 leakage detection, quantification and management are crucial. The STEMM-CCS (Strategies for Environmental Monitoring of Marine Carbon Capture and Storage) project aimed to provide techniques and understanding to enable and inform cost-effective monitoring of CCS sites in the marine environment. A controlled CO2 release experiment was carried out in the central North Sea, designed to mimic an unintended emission of CO2 from a subsurface CO2 storage site to the seafloor. A total of 675 kg of CO2 were released into the shallow sediments (~3 m 49 below seafloor), at flow rates between 6 and 143 kg/d. A combination of novel techniques, adapted versions of existing techniques, and well-proven standard techniques were used to detect, characterise and quantify gaseous and dissolved CO2 in the sediments and the overlying seawater. This paper provides an overview of this ambitious field experiment. We describe the preparatory work prior to the release experiment, the experimental layout and procedures, the methods tested, and summarise the main results and the lessons learnt.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: Evaluation of seismic reflection data has identified the presence of fluid escape structures cross-cutting overburden stratigraphy within sedimentary basins globally. Seismically-imaged chimneys/pipes are considered to be possible pathways for fluid flow, which may hydraulically connect deeper strata to the seabed. These fluid migration pathways through the overburden must be constrained to enable secure, long-term subsurface carbon dioxide (CO2) storage. We have investigated a site of natural active fluid escape in the North Sea, the Scanner Pockmark Complex, to determine the physical characteristics of focused fluid conduits, and how they control fluid flow. Here we show that a multi-scale, multi disciplinary experimental approach is required for complete characterisation of fluid escape structures. Geophysical techniques are necessary to resolve fracture geometry and subsurface structure (e.g., multifrequency seismics) and physical parameters of sediments (e.g., controlled source electromagnetics) across length scales (m to km). At smaller (mm to cm) scales, sediment cores were sampled directly and their physical and chemical properties assessed using laboratory-based methods. Numerical modelling approaches bridge the resolution gap, though their validity is dependent on calibration and constraint from field and laboratory experimental data. Further, time-lapse seismic and acoustic methods capable of resolving temporal changes are key for determining fluid flux. Future optimisation of experiment resource use may be facilitated by the installation of permanent seabed infrastructure, and replacement of manual data processing with automated workflows. This study can be used to inform measurement, monitoring and verification workflows that will assist policymaking, regulation, and best practice for CO2 subsurface storage operations.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: Highlights • An artificial CO2 release demonstrated MMV techniques for offshore CCS. • Detection of leakage was demonstrated using acoustic, chemical and physical approaches. • Attribution of leakage was proved possible using artificial and natural tracer compounds. • Leakage quantification was possible using approaches not previously applied to CCS studies. • Non-catastrophic leaks were detected at levels below those that would cause environmental harm. Carbon capture and storage is a key mitigation strategy proposed for keeping the global temperature rise below 1.5 °C. Offshore storage can provide up to 13% of the global CO2 reduction required to achieve the Intergovernmental Panel on Climate Change goals. The public must be assured that potential leakages from storage reservoirs can be detected and that therefore the CO2 is safely contained. We conducted a controlled release of 675 kg CO2 within sediments at 120 m water depth, to simulate a leak and test novel detection, quantification and attribution approaches. We show that even at a very low release rate (6 kg day−1), CO2 can be detected within sediments and in the water column. Alongside detection we show the fluxes of both dissolved and gaseous CO2 can be quantified. The CO2 source was verified using natural and added tracers. The experiment demonstrates that existing technologies and techniques can detect, attribute and quantify any escape of CO2 from sub-seabed reservoirs as required for public assurance, regulatory oversight and emissions trading schemes.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...