GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (4)
Document type
Years
Year
  • 1
    facet.materialart.
    Unknown
    Academic Press, Elsevier
    In:  EPIC3Advances in Neurotoxicology, Volume 6, Advances in Neurotoxicology, Volume 6, Academic Press, Elsevier, 47 p., ISBN: 2468-7480
    Publication Date: 2023-03-13
    Description: Naturally occurring neurotoxins belonging to two structurally distinct groups of guanidinium alkaloids known collectively as saxitoxins (STXs) and tetrodotoxins (TTXs) share a high affinity and ion flux blockage capacity for voltage-gated sodium ion channels (NaV). Both toxin groups are produced by marine microorganisms and widely distributed among vector species in the oceans, but are also found in terrestrial species. The STXs are often referred to as paralytic shellfish toxins (PSTs) based on their accumulation in shellfish and the symptoms in humans after consumption of toxic seafood. Biosynthesis of STXs is confirmed in four genera of marine dinoflagellates and among about a dozen species of primarily freshwater and brackish water strains of filamentous cyanobacteria. The origin of the STX biosynthetic genes in dinoflagellates remains controversial and may represent multiple horizontal gene transfer (HGT) events from progenitor bacteria and/or cyanobacteria. The recent identification of the biosynthetic genes for STX analogs in both cyanobacteria and dinoflagellates has yielded insights into mechanisms of toxin heterogeneity among species and the evolutionary origins of the respective elements of the toxin gene cluster. The biogenic origins of TTXs and tetrodotoxicity remain even more enigmatic. The TTXs occur primarily in marine pufferfish species, and hence tetrodotoxicity is frequently described as pufferfish poisoning (PFP) after the toxin syndrome in human consumers of such toxic fish. In marine environments, TTXs also appear in invertebrate species, particularly of benthic feeders on suspended particulates and carnivorous vector species. Symbiotic colonizing bacteria or free-living bacteria sequestered via feeding from the water column or sediments are most often invoked as proximal sources of TTXs in marine macrofauna, but endogenous biosynthesis independent of bacteria cannot be excluded. The TTX biosynthetic pathway has not been completely elucidated, and the biosynthetic genes are unknown.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-03-13
    Description: Harmful algal blooms (HAB) are recurrent phenomena in northern Europe along the coasts of the Baltic Sea, Kattegat-Skagerrak, eastern North Sea, Norwegian Sea and the Barents Sea. These HABs have caused occasional massive losses for the aquaculture industry and have chronically affected socioeconomic interests in several ways. This status review gives an overview of historical HAB events and summarises reports to the Harmful Algae Event Database from 1986 to the end of year 2019 and observations made in long term monitoring programmes of potentially harmful phytoplankton and of phycotoxins in bivalve shellfish. Major HAB taxa causing fish mortalities in the region include blooms of the prymnesiophyte Chrysochromulina leadbeateri in northern Norway in 1991 and 2019, resulting in huge economic losses for fish farmers. A bloom of the prymesiophyte Prymnesium polylepis (syn. Chrysochromulina polylepis) in the Kattegat-Skagerrak in 1988 was ecosystem disruptive. Blooms of the prymnesiophyte Phaeocystis spp. have caused accumulations of foam on beaches in the southwestern North Sea and Wadden Sea coasts and shellfish mortality has been linked to their occurrence. Mortality of shellfish linked to HAB events has been observed in estuarine waters associated with influx of water from the southern North Sea. The first bloom of the dictyochophyte genus Pseudochattonella was observed in 1998, and since then such blooms have been observed in high cell densities in spring causing fish mortalities some years. Dinoflagellates, primarily Dinophysis spp., intermittently yield concentrations of Diarrhetic Shellfish Toxins (DST) in blue mussels, Mytilus edulis, above regulatory limits along the coasts of Norway, Denmark and the Swedish west coast. On average, DST levels in shellfish have decreased along the Swedish and Norwegian Skagerrak coasts since approximately 2006, coinciding with a decrease in the cell abundance of D. acuta. Among dinoflagellates, Alexandrium species are the major source of Paralytic Shellfish Toxins (PST) in the region. PST concentrations above regulatory levels were rare in the Skagerrak-Kattegat during the three decadal review period, but frequent and often abundant findings of Alexandrium resting cysts in surface sediments indicate a high potential risk for blooms. PST levels often above regulatory limits along the west coast of Norway are associated with A. catenella (ribotype Group 1) as the main toxin producer. Other Alexandrium species, such as A. ostenfeldii and A. minutum, are capable of producing PST among some populations but are usually not associated with PSP events in the region. The cell abundance of A. pseudogonyaulax, a producer of the ichthyotoxin goniodomin (GD),has increased in the Skagerrak-Kattegat since 2010, and may constitute an emerging threat. The dinoflagellate Azadinium spp. have been unequivocally linked to the presence of azaspiracid toxins (AZT) responsible for Azaspiracid Shellfish Poisoning (AZP) in northern Europe. These toxins were detected in bivalve shellfish at concentrations above regulatory limits for the first time in Norway in blue mussels in 2005 and in Sweden in blue mussels and oysters (Ostrea edulis and Crassostrea gigas) in 2018. Certain members of the diatom genus Pseudonitzschia produce the neurotoxin domoic acid and analogs known as Amnesic Shellfish Toxins (AST). Blooms of Pseudo-nitzschia were common in the North Sea and the Skagerrak-Kattegat, but levels of AST in bivalve shellfish were rarely above regulatory limits during the review period. Summer cyanobacteria blooms in the Baltic Sea are a concern mainly for tourism by causing massive fouling of bathing water and beaches. Some of the cyanobacteria produce toxins, e.g. Nodularia spumigena producer of nodularin, which may be a human health problem and cause occasional dog mortalities. Coastal and shelf sea regions in northern Europe provide a key supply of seafood, socioeconomic well-being and ecosystem services. Increasing anthropogenic influence and climate change create environmental stressors causing shifts in the biogeography and intensity of HABs. Continued monitoring of HAB and phycotoxins and the operation of historical databases such as HAEDAT provide not only an ongoing status report but also provide a way to interpret causes and mechanisms of HABs.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-03-13
    Description: The IOC-ICES-PICES Harmful Algal Event Database (HAEDAT) was used to describe the diversity and spatiotemporal distribution of harmful algal events along the Atlantic margin of Europe from 1987 - 2018. The majority of events recorded are caused by Diarrhetic Shellfish Toxins (DSTs). These events are recorded annually over a wide geographic area from southern Spain to northern Scotland and Iceland, and are responsible for annual closures of many shellfish harvesting areas. The dominant causative dinoflagellates, members of the morphospecies ‘Dinophysis acuminata complex’ and D. acuta, are common in the waters of the majority of countries affected. There are regional differences in the causative species associated with PST events; the coasts of Spain and Portugal with the dinoflagellates Alexandrium minutum and Gymnodinium catenatum, north west France/south west England/south Ireland with A. minutum, and Scotland/Faroe Islands/Iceland with A. catenella. This can influence the duration and spatial scale of PST events as well as the toxicity of shellfish. The diatom Pseudo-nitzschia australis is the most widespread Domoic Acid (DA) producer, with records coming from Spain, Portugal, France, Ireland and the UK. Amnesic Shellfish Toxins (ASTs) have caused prolonged closures for the scallop fishing industry due to the slow depuration rate of DA. Amendments to EU shellfish hygiene regulations introduced between 2002 and 2005 facilitated end-product testing and sale of adductor muscle. This reduced the impact of ASTs on the scallop fishing industry and thus the number of recorded HAEDAT events. Azaspiracids (AZAs) are the most recent toxin group responsible for events to be characterised in the ICES area. Events associated with AZAs have a discrete distribution with the majority recorded along the west coast of Ireland. Ciguatera Poisoning (CP) has been an emerging issue in the Canary Islands and Madeira since 2004. The majority of aquaculture and wild fish mortality events are associated with blooms of the dinoflagellate Karenia mikimotoi and raphidophyte Heterosigma akashiwo. Such fish killing events occur infrequently yet can cause significant mortalities. Interannual variability was observed in the annual number of HAEDAT areas with events associated with individual shellfish toxin groups. HABs represent a continued risk for the aquaculture industry along the Atlantic margin of Europe and along the Atlantic margin of Europe and should be accounted for when considering expansion of the industry or operational shifts to offshore areas.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-04-25
    Description: The genus Amphidinium Clap. & J. Lachm. comprises a high diversity of planktonic and benthic (epiphytic and sand-dwelling) dinoflagellates from marine and freshwater ecosystems. High morphological plasticity and vaguely defined genus characteristics (e.g., a small epicone size) have complicated the clear delineation of species boundaries. Although six Amphidinium morphospecies have been reported from Mexican coastal waters, species identifications are uncertain and not generally supported by molecular phylogenetic data. In this study, seven isolates of Amphidinium from diverse benthic coastal locations on the NE Pacific, Gulf of California, and southern Gulf of Mexico were subjected to critical morphological analysis using photonic and scanning electron microscopy. The phylogenetic reconstruction was based on nuclear-encoded, partial large-subunit (LSU) rDNA and internal transcribed spacer I and II (ITS1 and ITS2) sequences. The revised phylogenetic analysis was consistent with the traditional subdivision of the genus Amphidinium into two sister groups: Herdmanii and Operculatum clades. This study provided the first confirmed records of A. theodorei and A. massartii from coastal waters of Mexico. The molecular phylogenetic evidence indicated that the morphologically described A. cf. carterae from Baja California was in fact more closely allied with A. eilatiensis sequences. A few Amphidinium species are known to form toxigenic (i.e., fish-killing) harmful algal blooms worldwide, and therefore knowledge on species diversity and biogeography is critical in developing effective strategies for evaluating the potential emerging threat in Mexican coastal waters.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...