GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023  (2)
  • 1
    Publication Date: 2021-12-06
    Description: Geological disasters are responsible for the loss of human lives and for significant economic and financial damage every year. Considering that these disasters may occur anywhere—both in remote and/or in highly populated areas—and anytime, continuously monitoring areas known to be more prone to geohazards can help to determine preventive or alert actions to safeguard human life, property and businesses. Remote sensing technology—especially satellite-based—can be of help due to its high spatial and temporal coverage. Indeed, data acquired from the most recent satellite missions is considered suitable for a detailed reconstruction of past events but also to continuously monitor sensitive areas on the lookout for potential geohazards. This work aims to apply different techniques and methods for extensive exploitation and analysis of remote sensing data, with special emphasis given to landslide hazard, risk management and disaster prevention. Multi-temporal SAR (Synthetic Aperture Radar) interferometry, SAR tomography, high-resolution image matching and data modelling are used to map out landslides and other geohazards and to also monitor possible hazardous geological activity, addressing different study areas: (i) surface deformation of mountain slopes and glaciers; (ii) land surface displacement; and (iii) subsidence, landslides and ground fissure. Results from both the processing and analysis of a dataset of earth observation (EO) multi-source data support the conclusion that geohazards can be identified, studied and monitored in an effective way using new techniques applied to multi-source EO data. As future work, the aim is threefold: extend this study to sensitive areas located in different countries; monitor structures that have strategic, cultural and/or economical relevance; and resort to artificial intelligence (AI) techniques to be able to analyse the huge amount of data generated by satellite missions and extract useful information in due course
    Description: Published
    Description: 4269
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: geohazards ; landslide detection ; remote sensing ; InSAR
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-02-02
    Description: Changbaishan volcano (China/North Korea border) consists of a cone with a summit caldera and last erupted in 1903. An unrest episode occurred between 2002 and 2006, followed by subsidence. The volcano was responsible for the largest eruption of the last Millennium in 946 CE and it is characterized by a multi-level plumbing system. Here, we analyze the Changbaishan 2018-2020 deformations by using remote sensing data, detecting an up to 20 mm/yr, NW-SE elongated nearly-uplift of its southeastern flank and a -20 mm/yr nearly-subsidence of the southwestern flank. Modeling results show that three active sources are responsible for the observed ground velocities: a deep tabular deflating source, a shallower inflating NW-SE elongated spheroid source, and a NW-SE striking dip-slip fault. The depth and geometry of the inferred sources are consistent with independent petrological and geophysical data. Our results reveal an upward magma migration from 14 km to 7.7 km. The modeling of the leveling data of the 2002-2005 uplift and 2009-2011 subsidence depicts sources consistent with the 2018-2020 active system retrieved. The past unrest is related to pressurization of the upper portion of the spheroid magma chamber, whereas the subsidence is due to crystallization of its floor, this latter reactivated in 2018-2020. Therefore, Changbaishan is affected by an active magma recharge controlled by a NW-SE trending fault system. Satellite data analysis is a key tool to unravel the magma dynamics at poorly monitored and crossborder volcanoes.
    Description: Published
    Description: 741287
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: active magma recharge ; Plumbing system ; Deformation modelling ; Changbaishan volcano ; InSAR ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...