GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 2020-2023  (10)
Publikationsart
Schlagwörter
Verlag/Herausgeber
Sprache
Erscheinungszeitraum
Jahr
  • 1
    Publikationsdatum: 2022-03-31
    Beschreibung: Earth angular momentum forecasts are naturally accompanied by forecast errors that typically grow with increasing forecast length. In contrast to this behavior, we have detected large quasi‐periodic deviations between atmospheric angular momentum wind term forecasts and their subsequently available analysis. The respective errors are not random and have some hard to define yet clearly visible characteristics which may help to separate them from the true forecast information. These kinds of problems, which should be automated but involve some adaptation and decision‐making in the process, are most suitable for machine learning methods. Consequently, we propose and apply a neural network to the task of removing the detected artificial forecast errors. We found that a cascading forward neural network model performed best in this problem. A total error reduction with respect to the unaltered forecasts amounts to about 30% integrated over a 6‐days forecast period. Integrated over the initial 3‐days forecast period, in which the largest artificial errors are present, the improvements amount to about 50%. After the application of the neural network, the remaining error distribution shows the expected growth with forecast length. However, a 24‐hourly modulation and an initial baseline error of 2 × 10−8 became evident that were hidden before under the larger forecast error.
    Beschreibung: Plain Language Summary: Variations in Earth rotation can be described by changes in Earth angular momentum. Angular momentum functions are calculated from mass redistributions, for example, given by atmospheric models. Typically, atmospheric model forecasts are naturally accompanied by forecast errors that grow with increasing forecast length. In contrast to this behavior, atmospheric angular momentum wind term forecasts show large quasi‐periodic deviations when compared to their subsequently available model analysis data. The detected errors are not random and have some hard to define yet clearly visible characteristics. A postprocessing step using machine learning methods was established to remove the detected artificial forecast errors. A cascading forward neural network approach was able to reduce the forecast error by about 50% for the first forecast days and about 30% for a 6‐day forecast horizon. Moreover, the remaining error distribution shows the expected growth with forecast length. This postprocessing step improves atmospheric angular momentum forecasts without touching the numerical weather prediction model itself. Improved angular momentum forecasts should help to further decrease Earth rotation predictions errors.
    Beschreibung: Key Points: Motion terms of atmospheric angular momentum forecasts contain systematic errors. Machine learning is used to learn and reduce these errors. Remaining stochastic errors show modulations with a 24‐hr period.
    Beschreibung: http://esmdata.gfz-potsdam.de:8080/repository
    Schlagwort(e): ddc:551.51
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-03-24
    Beschreibung: Glacial isostatic adjustment is largely governed by the rheological properties of the Earth's mantle. Large mass redistributions in the ocean–cryosphere system and the subsequent response of the viscoelastic Earth have led to dramatic sea level changes in the past. This process is ongoing, and in order to understand and predict current and future sea level changes, the knowledge of mantle properties such as viscosity is essential. In this study, we present a method to obtain estimates of mantle viscosities by the assimilation of relative sea level rates of change into a viscoelastic model of the lithosphere and mantle. We set up a particle filter with probabilistic resampling. In an identical twin experiment, we show that mantle viscosities can be recovered in a glacial isostatic adjustment model of a simple three-layer Earth structure consisting of an elastic lithosphere and two mantle layers of different viscosity. We investigate the ensemble behaviour on different parameters in the following three set-ups: (1) global observations data set since last glacial maximum with different ensemble initialisations and observation uncertainties, (2) regional observations from Fennoscandia or Laurentide/Greenland only, and (3) limiting the observation period to 10 ka until the present. We show that the recovery is successful in all cases if the target parameter values are properly sampled by the initial ensemble probability distribution. This even includes cases in which the target viscosity values are located far in the tail of the initial ensemble probability distribution. Experiments show that the method is successful if enough near-field observations are available. This makes it work best for a period after substantial deglaciation until the present when the number of sea level indicators is relatively high.
    Materialart: info:eu-repo/semantics/article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2022-02-24
    Beschreibung: Earth angular momentum forecasts are naturally accompanied by forecast errors that typically grow with increasing forecast length. In contrast to this behavior, we have detected large quasi-periodic deviations between atmospheric angular momentum wind term forecasts and their subsequently available analysis. The respective errors are not random and have some hard to define yet clearly visible characteristics which may help to separate them from the true forecast information. These kinds of problems, which should be automated but involve some adaptation and decision-making in the process, are most suitable for machine learning methods. Consequently, we propose and apply a neural network to the task of removing the detected artificial forecast errors. We found, that a cascading forward neural network model performed best in this problem. A total error reduction with respect to the unaltered forecasts amounts to about 30% integrated over a 6 day forecast period. Integrated over the initial 3 day forecast period, in which the largest artificial errors are present, the improvements amount to about 50%. After the application of the neural network, the remaining error distribution shows the expected growth with forecast length. However, a 24 hourly modulation and an initial baseline error of 2*10−8 became evident that were hidden before under the larger forecast error.
    Materialart: info:eu-repo/semantics/article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2022-07-07
    Materialart: info:eu-repo/semantics/other
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2022-01-24
    Beschreibung: We suggest to apply data assimilation in glacial isostatic adjustment (GIA) to constrain the mantle viscosity structure based on sea level observations. We apply the Parallel Data Assimilation Framework (PDAF) to assimilate sea level data into the time-domain spectral-finite element code VILMA in order to obtain better estimates of the mantle viscosity structure. In a first step, we reduce to a spherically symmetric earth structure and prescribe the glaciation history. A particle filter is used to propagate an ensemble of models in time. At epochs when observations are available, each particle's performance is estimated and the particles are resampled based on their performance to form a new ensemble that better resembles the true viscosity distribution. Using this algorithm, we show the ability to recover mantle viscosities from a set of synthetic relative sea level observations. Those synthetic observations are obtained from a reference run with a given viscosity structure that defines the target viscosity values in our experiments. The viscosity estimation is applied to a three-layer model with an elastic lithosphere and two mantle layers, and to a multi-layer model with a smoother viscosity profile. We use various subsets of realistic observation locations (e.g. only observations from Fennoscandia) and show that it is possible to obtain the target viscosity values in those cases. We also vary the time from which observations are available to evolve the test cases towards a realistic scenario for the availability of relative sea level observations. The most relevant cases start at 26.5ka BP and at 10ka BP as they mark the beginning of the maximum glaciation and the end of deglaciation with a larger amount of observations following, respectively, and end at present day.
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/conferenceObject
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2022-07-15
    Beschreibung: Satellite-measured tidal magnetic signals are of growing importance. These fields are mainly used to infer Earth’s mantle conductivity, but also to derive changes in the oceanic heat content. We present a new Kalman filter-based method to derive tidal magnetic fields from satellite magnetometers: KALMAG. The method’s advantage is that it allows to study a precisely estimated posterior error covariance matrix. We present the results of a simultaneous estimation of the magnetic signals of 8 major tides from 17 years of Swarm and CHAMP data. For the first time, robustly derived posterior error distributions are reported along with the reported tidal magnetic fields. The results are compared to other estimates that are either based on numerical forward models or on satellite inversions of the same data. For all comparisons, maximal differences and the corresponding globally averaged RMSE are reported. We found that the inter-product differences are comparable with the KALMAG-based errors only in a global mean sense. Here, all approaches give values of the same order, e.g., 0.09 nT-0.14 nT for M2. Locally, the KALMAG posterior errors are up to one order smaller than the inter-product differences, e.g., 0.12 nT vs. 0.96 nT for M2.
    Materialart: info:eu-repo/semantics/article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2022-02-26
    Beschreibung: This is a synthetic dataset. It was created from the outputs of the glacial isostatic adjustment model VILMA (Klemann et al. 2008). It consists of realtive sea level (RSL) data on a global regular grid. The resolution is 256 x 512 points (Lat x Lon). The tomporal range is from 123 ka BP until present day. Time steps vary between 2.5 kyrs at the beginning and 0.5 kyrs towards the end. The data were created for a specific configuration of the GIA model: lithosphere thickness = 60 km, lithosphere viscosity = 1.0E31 Pa s, upper mantle thickness = 610 km, upper mantle viscosity = 1.0E20 Pa s, lower mantle thickness = 3,221 km, lower mantle viscosity = 1.0E21 Pa s. The RSL data are accompanied by a observation locations mask. This mask was used to identify those locations in the global RSL dataset where real observations are available. The dataset consists of realtive sea level (RSL) data on a global regular grid. The resolution is 256 x 512 points (Lat x Lon). The temporal range is from 123 ka BP until present day. Time steps vary between 2.5 kyrs at the beginning and 0.5 kyrs towards the end. The data were created for a specific configuration of the GIA model: lithosphere thickness = 60 km, lithosphere viscosity = 1.0E31 Pa s, upper mantle thickness = 610 km, upper mantle viscosity = 1.0E20 Pa s, lower mantle thickness = 3,221 km, lower mantle viscosity = 1.0E21 Pa s. The RSL data are accompanied by observation locations masks. These masks were used to mark those locations in the global RSL dataset where real-life observations are available in order to restrict usage of the synthetic data to those locations.
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/workingPaper
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2022-09-26
    Beschreibung: We present the extension of the Kalmag model, proposed as a candidate for IGRF-13, to the twentieth century. The dataset serving its derivation has been complemented by new measurements coming from satellites, ground-based observatories and land, marine and airborne surveys. As its predecessor, this version is derived from a combination of a Kalman filter and a smoothing algorithm, providing mean models and associated uncertainties. These quantities permit a precise estimation of locations where mean solutions can be considered as reliable or not. The temporal resolution of the core field and the secular variation was set to 0.1 year over the 122 years the model is spanning. Nevertheless, it can be shown through ensembles a posteriori sampled, that this resolution can be effectively achieved only by a limited amount of spatial scales and during certain time periods. Unsurprisingly, highest accuracy in both space and time of the core field and the secular variation is achieved during the CHAMP and Swarm era. In this version of Kalmag, a particular effort was made for resolving the small-scale lithospheric field. Under specific statistical assumptions, the latter was modeled up to spherical harmonic degree and order 1000, and signal from both satellite and survey measurements contributed to its development. External and induced fields were jointly estimated with the rest of the model. We show that their large scales could be accurately extracted from direct measurements whenever the latter exhibit a sufficiently high temporal coverage. Temporally resolving these fields down to 3 hours during the CHAMP and Swarm missions, gave us access to the link between induced and magnetospheric fields. In particular, the period dependence of the driving signal on the induced one could be directly observed. The model is available through various physical and statistical quantities on a dedicated website at https://ionocovar.agnld.uni-potsdam.de/Kalmag/.
    Materialart: info:eu-repo/semantics/article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    facet.materialart.
    Unbekannt
    In:  Encyclopedia of Geodesy | Encyclopedia of Earth Sciences Series
    Publikationsdatum: 2022-10-17
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/bookPart
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2022-05-16
    Beschreibung: Ocean sediment drifts contain important information about past bottom currents but a direct link between the study of sedimentary archives and ocean dynamics is not always possible. To close this gap for the North Atlantic, we set up a new coupled Ice-Ocean-Sediment Model of the N. Atlantic - Arctic region. In order to evaluate the potential dynamics of the model, we conducted decadal sensitivity experiments. In our model contouritic sedimentation shows a significant sensitivity towards climate variability for most of the contourite drift locations in the model domain. We observe a general decrease of sedimentation rates during warm conditions with decreasing atmospheric and oceanic gradients and an extensive increase of sedimentation rates during cold conditions with respective increased gradients. We can relate these results to changes in the dominant bottom circulation supplying deep water masses to the contourite sites under different climate conditions. A better understanding of northern deep water pathways in the Atlantic Meridional Overturning Circulation (AMOC) is crucial for evaluating possible consequences of climate change in the ocean.
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...