GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 126(5), (2021): e2020JC016922, https://doi.org/10.1029/2020JC016922.
    Description: Mesoscale eddies redistribute heat, salt, and nutrients in oceans. The South Atlantic Ocean (SA) is a basin that has active mesoscale eddies for which characteristics of the three-dimensional structure and its leading mechanism are complex but have yet been studied sufficiently. Here based on ocean reanalysis datasets we use a composite analysis approach to analyze the mixed layer anomalous heat budget and find distinct two types of spatial patterns: dipole and monopole – mainly present in the northern and southern regions of the SA, respectively. The dipole can be attributed to ocean horizontal advection, especially to the combined effect of eddy anomalous meridional current and meridional gradient of mean temperature. The monopole, on the other hand, is associated with complex contributions, for which zonal and meridional advections play opposite roles as cooling or heating around the eddies. At the eddy center, the vertical advection is non-negligible, especially the mean upwelling and vertical temperature gradient playing a vital role in the formation of a monopole. The analysis of eddy meridional heat transport shows that the stirring component is dominant, and poleward in most areas, especially at high latitudes. Such analysis on the leading mechanism of eddy-induced temperature anomaly could help improve our understanding on meso- and small-scale air-sea interactions and eddy-induced heat transport in the SA.
    Description: This work is supported by the National Key R&D Program of China (2017YFC1404100 and 2017YFC1404104) and the National Natural Science Foundation of China (Grant No. 41775100, 41830964) as well as Shandong Province’s “Taishan” Scientist Program and Qingdao “Creative and Initiative” frontier Scientist Program. This research is also supported by the Center for High Performance Computing and System Simulation, Pilot National Laboratory for Marine Science and Technology (Qingdao).
    Keywords: Composite three-dimensional structure ; Eddy heat transport ; Mesoscale eddies ; Mixed layer heat budget ; South Atlantic Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Johnston, T. M. S., Schonau, M. C., Paluszkiewicz, T., MacKinnon, J. A., Arbic, B. K., Colin, P. L., Alford, M. H., Andres, M., Centurioni, L., Graber, H. C., Helfrich, K. R., Hormann, V., Lermusiaux, P. F. J., Musgrave, R. C., Powell, B. S., Qiu, B., Rudnick, D. L., Simmons, H. L., St Laurent, L., Terrill, E. J., Trossman, D. S., Voet, G., Wijesekera, H. W., & Zeiden, K. L. Flow Encountering Abrupt Topography (FLEAT): a multiscale observational and modeling program to understand how topography affects flows in the western North Pacific. Oceanography, 32(4), (2019): 10-21, doi: 10.5670/oceanog.2019.407.
    Description: Using a combination of models and observations, the US Office of Naval Research Flow Encountering Abrupt Topography (FLEAT) initiative examines how island chains and submerged ridges affect open ocean current systems, from the hundreds of kilometer scale of large current features to the millimeter scale of turbulence. FLEAT focuses on the western Pacific, mainly on equatorial currents that encounter steep topography near the island nation of Palau. Wake eddies and lee waves as small as 1 km were observed to form as these currents flowed around or over the steep topography. The direction and vertical structure of the incident flow varied over tidal, inertial, seasonal, and interannual timescales, with implications for downstream flow. Models incorporated tides and had grids with resolutions of hundreds of meters to enable predictions of flow transformations as waters encountered and passed around Palau’s islands. In addition to making scientific advances, FLEAT had a positive impact on the local Palauan community by bringing new technology to explore local waters, expanding the country’s scientific infrastructure, maintaining collaborations with Palauan partners, and conducting outreach activities aimed at elementary and high school students, US embassy personnel, and Palauan government officials.
    Description: We are grateful to Captains David Murline and Tom Desjardins and the crew of R/V Roger Revelle, and to the staff of the Coral Reef Research Foundation, for their help in carrying out the field program; to ONR for funding this work; and to FLEAT colleagues for their collaboration. We wish to thank the Bureau of Marine Resources, Ministry of Natural Resources, Environment and Tourism of the Palau National Government, and the Angaur, Kayangel, Koror, and Peleliu State Governments for the relevant permits to conduct this research in Palau’s waters.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...