GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (4)
  • 2020-2024  (3)
  • 2020-2023  (1)
Document type
Publisher
Years
Year
  • 1
    Publication Date: 2022-08-15
    Description: Most studies on the potential impacts of deep-sea mining in the Clarion Clipperton Zone (CCZ) have largely focused on benthic ecosystems but ignore the pelagic environment. To model full-scale impacts, it is important to understand how sediment discharge might affect the pelagic zone as well. This study combines in situ optics, hydrography, and remote sensing to describe particle abundance and size distribution through the entire water column in the CCZ (German sector). CCZ surface waters were characterized as productive over the year. During the winter, we observed the formation of a sharp transition zone in Chla concentration, identifying the area as a productive transitional zone toward a more depleted ocean gyre. In the German sector, median particle size was small (±77 µm), and large particles (〉 300 µm) were rare. By assessing particle flux attenuation, we could show that the presence of a thick oxygen minimum zone (OMZ) plays an essential role in export and transformation of settling aggregates, with strong diel variations. We suggest that the combination of small aggregate size, bottom currents and slow seafloor consolidation may explain the extremely low sedimentation rate in the CCZ. We conclude that sediment incorporations and ballasting effect on settling particulate matter represent the most significant hazard on midwater and benthic ecosystems.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-06-21
    Description: Scientific, industrial and societal needs call urgently for the development and establishment of intelligent, cost-effective and ecologically sustainable monitoring protocols and robotic platforms for the continuous exploration of marine ecosystems. Internet Operated Vehicles (IOVs) such as crawlers, provide a versatile alternative to conventional observing and sampling tools, being tele-operated, (semi-) permanent mobile platforms capable of operating on the deep and coastal seafloor. Here we present outstanding observations made by the crawler “Wally” in the last decade at the Barkley Canyon (BC, Canada, NE Pacific) methane hydrates site, as a part of the NEPTUNE cabled observatory. The crawler followed the evolution of microhabitats formed on and around biotic and/or abiotic structural features of the site (e.g., a field of egg towers of buccinid snails, and a colonized boulder). Furthermore, episodic events of fresh biomass input were observed (i.e., the mass transport of large gelatinous particles, the scavenging of a dead jellyfish and the arrival of macroalgae from shallower depths). Moreover, we report numerous faunal behaviors (i.e., sablefish rheo- and phototaxis, the behavioral reactions and swimming or resting patterns of further fish species, encounters with octopuses and various crab intra- and interspecific interactions). We report on the observed animal reactions to both natural and artificial stimuli (i.e., crawler’s movement and crawler light systems). These diverse observations showcase different capabilities of the crawler as a modern robotic monitoring platform for marine science and offshore industry. Its long deployments and mobility enable its efficiency in combining the repeatability of long-term studies with the versatility to opportunistically observe rarely seen incidents when they occur, as highlighted here. Finally, we critically assess the empirically recorded ecological footprint and the potential impacts of crawler operations on the benthic ecosystem of the Barkley Canyon hydrates site, together with potential solutions to mitigate them into the future.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-06-21
    Description: Recent advances in robotic design, autonomy and sensor integration create solutions for the exploration of deep-sea environments,transferable to the oceans of icy moons. Marine platforms do not yet have the mission autonomy capacity of their space counterparts (e.g., the state of the art Mars Perseverance rover mission), although different levels of autonomous navigation and mapping, as well as sampling, are an extant capability. In this setting their increasingly biomimicked designs may allow access to complex environmental scenarios, with novel, highly-integrated life-detecting, oceanographic and geochemical sensor packages. Here, we lay an outlook for the upcoming advances in deep-sea robotics through synergies with space technologies within three major research areas: biomimetic structure and propulsion (including power storage and generation), artificial intelligence and cooperative networks, and life-detecting instrument design. New morphological and material designs, with miniaturized and more diffuse sensor packages, will advance robotic sensing systems. Artificial intelligence algorithms controlling navigation and communications will allow the further development of the behavioral biomimicking by cooperating networks. Solutions will have to be tested within infrastructural networks of cabled observatories, neutrino telescopes, and off-shore industry sites with agendas and modalities that are beyond the scope of our work, but could draw inspiration on the proposed examples for the operational combination of fixed and mobile platforms.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-03-27
    Description: Interest in deep-sea mining for polymetallic nodules as an alternative source to onshore mines for various high-technology metals has risen in recent years, as demands and costs have increased. The need for studies to assess its short- and long-term consequences on polymetallic nodule ecosystems is therefore also increasingly prescient. Recent image-based expedition studies have described the temporal impacts on epi-/megafauna seafloor communities across these ecosystems at particular points in time. However, these studies have failed to capture information on large infauna within the sediments or give information on potential transient and temporally limited users of these areas, such as mobile surface deposit feeders or fauna responding to bloom events or food fall depositions. This study uses data from the Peru Basin polymetallic nodule province, where the seafloor was previously disturbed with a plough harrow in 1989 and with an epibenthic sled (EBS) in 2015, to simulate two contrasting possible impact forms of mining disturbance. To try and address the shortfall on information on transient epifauna and infauna use of these various disturbed and undisturbed areas of nodule-rich seafloor, images collected 6 months after the 2015 disturbance event were inspected and all Lebensspuren, ‘traces of life’, were characterized by type (epi- or infauna tracemakers, as well as forming fauna species where possible), along with whether they occurred on undisturbed seafloor or regions disturbed in 1989 or 2015. The results show that epi- and endobenthic Lebensspuren were at least 50% less abundant across both the ploughed and EBS disturbed seafloors. This indicates that even 26 years after disturbance, sediment use by fauna may remain depressed across these areas.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...