GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-04-20
    Description: The hydrolytic degradation of biodegradable and conventional plastics by the gastric fluid of the edible crab Cancer pagurus were assayed in-vitro with pH Stat titration. Suspensions of different microplastics were incubated with gastric fluid at 15 °C in artificial seawater. Rates of hydrolysis, as determined by counter-titration with a diluted base (NaOH), was recorded for two hours. The gastric fluid was separated by anion exchange chromatography into 65 fractions. Again, three pools of fractions were tested for their hydrolytic potential with a plastic based on polylactic acid at 30°C. Enzyme assays with fluorogenic substrates were performed with each of the 65 fractions of the gastric fluid. Methylumbelliferone derivatives of fatty acid esters (MUF-butyrate, MUF-heptanoate and MUF-oleate) were used as substrates in buffer at different pH ranging from 5 to 9 and at a temperature of 25°C. The increase in fluorescence was measured with a microplate reader. Analogously, the effect of a detergent (sodium dodecyl sulfate) on the enzymatic activity was measured. All measurements were conducted under controlled laboratory conditions.
    Keywords: Binary Object; biodegradation; bioplastic; BIO-PLASTICS_EUROPE; Developing and Implementing Sustainability-Based Solutions for Bio-Based Plastic Production and Use to Preserve Land and Sea Environmental Quality in Europe; enzyme activity; esterases; File content; Helgoland; Helgoland, North Sea; Hydrolysis; Identification; invertebrates; Method comment; MULT; Multiple investigations; pH; plastic; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 224 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Springer Science and Business Media LLC
    In:  EPIC3Biodiversity and Conservation, Springer Science and Business Media LLC, 32(8-9), pp. 2747-2768, ISSN: 0960-3115
    Publication Date: 2023-07-20
    Description: Marine sublittoral sandbanks are essential offshore feeding grounds for larger crustaceans, fish and seabirds. In the southern North Sea, sandbanks are characterized by considerable natural sediment dynamics and are subject to chronic bottom trawling. However, except for the Dogger Bank, sandbanks in the southeastern North Sea have been only poorly investigated until now. We used an extensive, multi-annual dataset covering ongoing national monitoring programmes, environmental impact assessments, and basic research studies to analyse benthic communities on sublittoral sandbanks, evaluating their ecological value against the backdrop of similar seafloor habitats in this region. The analysis revealed complex spatial structuring of sandy seafloor habitats of the southeastern North Sea. Different infauna clusters were identified and could be specified by their composition of characteristic species. The sandbanks shared common structural features in their infauna community composition although they were not necessarily characterized by particularly high biodiversity compared to other sandy habitats. A close association of one of the main bioturbators in the southern North Sea, the sea urchin Echinocardium cordatum, with sandbanks was detected, which may promote the sediment-bound biogeochemical activity in this particular seafloor habitat. This would corroborate the status of sandbanks as sites of high ecological value calling for consideration in marine conservation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-06-05
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , NonPeerReviewed
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Elsevier
    In:  EPIC3Data in Brief, Elsevier, 46, pp. 108790-108790, ISSN: 2352-3409
    Publication Date: 2024-02-06
    Description: The German Bight (North Sea) is a centre of development of offshore wind energy. In the near future, windfarms will cover a significant part (about 25%) of the German Exclusive Economic Zone. In order to understand and assess potential effects of the construction and early operational phase of offshore wind turbines on the marine environment, an extensive research programme was carried out at Germany's first offshore windfarm alpha ventus. Here, data are presented on macroinfauna and local sediment characteristics collected as part of this programme. Grab samples were taken annually in autumn in 2008 (baseline), 2009 (construction phase) and 2010 and 2011 (early operational phase). Sampling stations were located along transects between adjacent turbines inside the windfarm and in two reference areas with similar environmental conditions in terms of sediment characteristics and water depth. A total of 336 samples were taken inside the windfarm and 192 samples in the reference areas. Sediment characteristics were described in terms of grain size distribution and organic content. The infauna was taxonomically analysed and quantified in terms of abundance and biomass. One-hundred three infauna taxa were identified, mainly belonging to the polychaetes, crustaceans and bivalves, living in fine to medium sandy soft bottom in water depths ranging from -27 m to -30 m. The data can be useful in meta-analyses of renewable energies impacts. Additionally, the data can support species distribution modelling to gain a better understanding of species' requirements and habitats as a basis for spatial planning scenarios and the evaluation of the ecological status of the marine environment. Moreover, the data can serve as baseline data for future monitoring and management of nearby protected areas where environmental conditions are comparable to those of the present study area.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-12-16
    Description: Microbial composition and diversity in marine sediments are shaped by environmental, biological, and anthropogenic processes operating at different scales. However, our understanding of benthic microbial biogeography remains limited. Here, we used 16S rDNA amplicon sequencing to characterize benthic microbiota in the North Sea from the top centimeter of 339 sediment samples. We utilized spatially explicit statistical models, to disentangle the effects of the different predictors, including bottom trawling intensity, a prevalent industrial fishing practice which heavily impacts benthic ecosystems. Fitted models demonstrate how the geographic interplay of different environmental and anthropogenic drivers shapes the diversity, structure and potential metabolism of benthic microbial communities. Sediment properties were the primary determinants, with diversity increasing with sediment permeability but also with mud content, highlighting different underlying processes. Additionally, diversity and structure varied with total organic matter content, temperature, bottom shear stress and bottom trawling. Changes in diversity associated with bottom trawling intensity were accompanied by shifts in predicted energy metabolism. Specifically, with increasing trawling intensity, we observed a transition toward more aerobic heterotrophic and less denitrifying predicted metabolism. Our findings provide first insights into benthic microbial biogeographic patterns on a large spatial scale and illustrate how anthropogenic activity such as bottom trawling may influence the distribution and abundances of microbes and potential metabolism at macroecological scales.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...