GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (43)
  • 2020-2022  (8)
  • 2021  (51)
  • 2021  (51)
Document type
Keywords
Years
  • 2020-2024  (43)
  • 2020-2022  (8)
Year
  • 1
    facet.materialart.
    Unknown
    Elsevier | Cell Press
    Publication Date: 2023-10-06
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel
    In:  GEOMAR Report, N. Ser. 059 . GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Kiel, Germany, 359 + Appendix (in all 802) pp.
    Publication Date: 2021-11-15
    Description: Cruise SO268 is fully integrated into the second phase of the European collaborative JPI-Oceans project MiningImpact and is designed to assess the environmental impacts of deep-sea mining of polymetallic nodules in the Clarion-Clipperton Fracture Zone (CCZ). In particular, the cruise aimed at conducting an independent scientific monitoring of the first industrial test of a pre-protoype nodule collector by the Belgian company DEME-GSR. The work includes collecting the required baseline data in the designated trial and reference sites in the Belgian and German contract areas, a quantification of the spatial and temporal spread of the produced sediment plume during the trials as well as a first assessment of the generated environmental impacts. However, during SO268 Leg 1 DEME-GSR informed us that the collector trials would not take place as scheduled due to unresolvable technical problems. Thus, we adjusted our work plan accordingly by implementing our backup plan. This involved conducting a small-scale sediment plume experiment with a small chain dredge to quantify the spatial and temporal dispersal of the suspended sediment particles, their concentration in the plume as well as the spatial footprint and thickness of the deposited sediment blanket on the seabed. Leg 1 and 2 acquired detailed environmental baseline data in the designated collector trial and reference sites as well as the site of the small-scale sediment plume experiment. The plume experiment was monitored by an array of acoustic and optical sensors and the impacted area was investigated in order to develop standards and protocols for impact assessments and recommendations for marine policy and international legislation. A more technical aim of the cruise was to test tools, technologies, and a concept for the environmental monitoring of future deep-sea mining operations. This comprised oceanographic, biological, microbiological, biogeochemical, and geologic investigations which required the deployment of a multitude of seagoing equipment, such as ROV Kiel 6000 for sampling of sediments, nodules, and benthic fauna as well as carrying out in situ measurements and experiments, and the deployment of the plume sensor array. AUV ABYSS and ROV Kiel 6000 were used for high-resolution acoustic mapping of the seafloor using mounted multibeam systems and video/photo surveys of the manganese nodule habitat. This work was accompanied by video observations with the OFOS system. Several benthic landers and moorings with acoustic and optical sensors were deployed and recovered for the measurements of physical and chemical oceanographic variables. Coring devices (i.e., box corer, gravity corer, TV-guided multiple corer, ROV-operaten push cores) were used to collect sediment samples for biological, geochemical, and microbiological analyses, and a CTD rosette water sampler, in situ pumps, and a bottom water sampler sampled the water column. In addition, recolonization experiments for nodule-associated fauna were started by deploying artificial hard substrates on the seabed of the working areas.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: Highlights • Approaches for CO2 leakage detection, attribution and quantification monitoring exist. • Many approaches cover multiple monitoring tasks simultaneously. • Sonars and chemical sensors on ships or AUVs can cover large areas. • Newer, more specific technologies can detect, verify and quantify smaller, localised leaks. Environmental monitoring of offshore Carbon Capture and Storage (CCS) complexes requires robust methodologies and cost-effective tools to detect, attribute and quantify CO2 leakage in the unlikely event it occurs from a sub-seafloor reservoir. Various approaches can be utilised for environmental CCS monitoring, but their capabilities are often undemonstrated and more detailed monitoring strategies need to be developed. We tested and compared different approaches in an offshore setting using a CO2 release experiment conducted at 120 m water depth in the Central North Sea. Tests were carried out over a range of CO2 injection rates (6 - 143 kg d−1) comparable to emission rates observed from abandoned wells. Here, we discuss the benefits and challenges of the tested approaches and compare their relative cost, temporal and spatial resolution, technology readiness level and sensitivity to leakage. The individual approaches demonstrate a high level of sensitivity and certainty and cover a wide range of operational requirements. Additionally, we refer to a set of generic requirements for site-specific baseline surveys that will aid in the interpretation of the results. Critically, we show that the capability of most techniques to detect and quantify leakage exceeds the currently existing legal requirements.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: The exchange of CH4 by CO2 in gas hydrates is of interest for the production of natural gas from methane hydrate with net zero climate gas balance, and for managing risks that are related to sediment destabilization and mobilization after gas-hydrate dissociation. Several experimental studies on the dynamics and efficiency of the process exist, but the results seem to be partly inconsistent. We used confocal Raman spectroscopy to map an area of several tens to hundreds µm of a CH4 hydrate sample during its exposure to liquid and gaseous CO2. On this scale, we could identify and follow different processes in the sample that occur in parallel. Next to guest-molecule exchange, gas-hydrate dissociation also contributes to the release of CH4. During our examination period, about 50% of the CO2 was bound by exchange for CH4 molecules, while the other half was bound by new formation of CO2 hydrates. We evaluated single gas-hydrate grains with confirmed gas exchange and applied a diffusion equation to quantify the process. Obtained diffusion coefficients are in the range of 10−13–10−18 m2/s. We propose to use this analytical diffusion equation for a simple and robust modeling of CH4 production by guest-molecule exchange and to combine it with an additional term for gas-hydrate dissociation.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: Seafloor heat flow measurements are utilized to determine the geothermal regime of the Danube deep-sea fan in the western Black Sea and are presented in the larger context of regional gas hydrate occurrences. Heat flow data were collected across paleo-channels in water depths of 550–1460 m. Heat flow across levees ranges from 25 to 30 mW m−2 but is up to 65 mW m−2 on channel floors. Gravity coring reveals sediment layers typical of the western Black Sea, consisting of three late Pleistocene to Holocene units, notably red clay within the lowermost unit cored. Heat flow derived from the bottom-simulating reflector (BSR), assumed to represent the base of the gas hydrate stability zone (GHSZ), deviates from seafloor measurements. These discrepancies are linked either to fast sedimentation or slumping and associated variations in sediment physical properties. Topographic effects account of up to 50% of heat flow deviations from average values. Combined with climate-induced variations in seafloor temperature and sea-level since the last glacial maximum large uncertainties in the prediction of the base of the GHSZ remain. A regional representative heat flow value is ~30 mW m−2 for the study region but deviations from this value may be up to 100%.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: Highlights • Surface sediments react quickly with leaking CO2 and release cations into porewaters. • Both carbonate and silicate mineral dissolution lead to neutralization of CO2 in the sediments. • During short-term exposure to CO2 no toxic substances were released from North Sea surface sediments. • Porewater composition can be used as a diagnostic indicator of CO2 leakage from storage reservoirs. Abstract Sub-seabed geological CO2 storage is discussed as a climate mitigation strategy, but the impact of any leakage of stored CO2 into the marine environment is not well known. In this study, leakage from a CO2 storage reservoir through near-surface sediments was mimicked for low leakage rates in the North Sea. Field data were combined with laboratory experiments and transport-reaction modelling to estimate CO2 and mineral dissolution rates, and to assess the mobilization of metals in contact with CO2-rich fluids and their potential impact on the environment. We found that carbonate and silicate minerals reacted quickly with the dissolved CO2, increasing porewater alkalinity and neutralizing about 5% of the injected CO2. The release of Ca, Sr, Ba and Mn was mainly controlled by carbonate dissolution, while Fe, Li, B, Mg, and Si were released from silicate minerals, mainly from deeper sediment layers. No toxic metals were released from the sediments and overall the injected CO2 was only detected up to 1 m away from seabed CO2 bubble streams. Our results suggest that low leakage rates of CO2 over short timescales have minimal impact on the benthic environment. However, porewater composition and temperature are effective indicators for leakage detection, even at low CO2 leakage rates.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: Predictability of the dispersion of sediment plumes induced by potential deep-sea mining activities is still very limited due to operational limitations on in-situ observations required for a thorough validation and calibration of numerical models. Here we report on a plume dispersion experiment carried out in the German license area for the exploration of polymetallic nodules in the northeastern tropical Pacific Ocean in 4,200 m water depth. The dispersion of a sediment plume induced by a small-scale dredge experiment in April 2019 was investigated numerically by employing a sediment transport module coupled to a high-resolution hydrodynamic regional ocean model. Various aspects including sediment characteristics and ocean hydrodynamics were examined to obtain the best statistical agreement between sensor-based observations and model results. Results show that the model is capable of reproducing suspended sediment concentration and redeposition patterns observed during the dredge experiment. Due to a strong southward current during the dredging, the model predicts no sediment deposition and plume dispersion north of the dredging tracks. The sediment redeposition thickness reaches up to 9 mm directly next to the dredging tracks and 0.07 mm in about 320 m away from the dredging center. The model results suggest that seabed topography and variable sediment release heights above the seafloor cause significant changes especially for the low sedimentation pattern in the far-field area. Near-bottom mixing is expected to strongly influence vertical transport of suspended sediment.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-07
    Description: Highlights • In-situ temperature measurements were conducted at the Danube deep sea fan. • Operations were performed with the MARUM-MeBo200 seafloor drill rig. • The BSR is located ∼20 m below the current gas hydrate stability zone. • Seismic data suggest presence of shallower BSR-like events. Abstract Coring, geophysical logging, and in-situ temperature measurements were performed with the MARUM-MeBo200 seafloor rig to characterize gas hydrate occurrences in sediments of the Danube deep sea fan, off Romania, Black Sea. The new drilling data showed no evidence for significant gas hydrate saturations within the sediments but the presence of free gas at the depth of the bottom-simulating reflector (BSR). In-situ temperature and core-derived geochemical data suggest that the current base of the gas hydrate stability zone (BGHSZ) is ∼20 m shallower than the BSR. Investigation of the seismic data around the drill sites shows several locations where free gas previously trapped at a former BGHSZ migrated upwards forming a new reflection above the BSR. This shows that the gas hydrate system in the Danube deep sea fan is still responding to climate changes initiated at the end of the last glacial maximum.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-07
    Description: The "guest exchange"of methane (CH4) by carbon dioxide (CO2) in naturally occurring gas hydrates is seen as a possibility to concurrently produce CH4 and sequester CO2. Presently, process evaluation is based on CH4-CO2 exchange yields of small-or medium-scale laboratory experiments, mostly neglecting mass and heat transfer processes. This work investigates process efficiencies in two large-scale experiments (210 L sample volume) using fully water-saturated, natural reservoir conditions and a gas hydrate saturation of 50%. After injecting 50 kg of heated CO2 discontinuously (E1) and continuously (E2) and a subsequent soaking period, the reservoir was depressurized discontinuously. It was monitored using electrical resistivity, temperature and pressure sensors, and fluid flow and gas composition measurements. Phase and component inventories were analyzed based on mass and volume balances. The total CH4 production during CO2 injection was only 5% of the initial CH4 inventory. Prior to CO2 breakthrough, the produced CH4 roughly equaled dissolved CH4 in the produced pore water, which balanced the volume of the injected CO2. After CO2 breakthrough, CH4 ratios in the released CO2 quickly dropped to 2.0-0.5 vol %. The total CO2 retention was the highest just before the CO2 breakthrough and higher in E1 where discontinuous injection improved the distribution of injected CO2 and subsequent mixed hydrate formation. The processes were improved by the succession of CO2 injection by controlled degassing at stability limits below that of the pure CH4 hydrate, particularly in experiment E2. Here, a more heterogeneous distribution of liquid CO2 and larger availability of free water led to smaller initial degassing of liquid CO2. This allowed for quick re-formation of mixed gas hydrates and CH4 ratios of 50% in the produced gases. The experiments demonstrate the importance of fluid migration patterns, heat transport, sample inhomogeneity, and secondary gas hydrate formation in water-saturated sediments.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-07
    Description: Highlights • Geochemical analyses highlight multiple diagenesis processes occurring in the sediment. • Intense methane seepages and organic matter degradation contribute to the sulfate reduction. • Chemical of dissolved and mineral iron species indicate that iron is associated with clay minerals. • In response to seawater intrusion, ion exchange, dissolution and reverse weathering reactions change the composition of clay constituting the sediment. Abstract Pore water and sediment geochemistry in the western Black Sea were investigated on long Calypso piston core samples. Using this type of coring device facilitates the recovery of the thick sediment record necessary to analyze transport-reaction processes in response to the postglacial sea-level rise and intrusion of Mediterranean salt water 9 ka ago, and thus, to better characterize key biogeochemical processes and process changes in response to the shift from lacustrine to marine bottom water composition. Complementary data indicate that organic matter degradation occurs in the upper 15 m of the sediment column. However, sulfate reduction coupled with Anaerobic Methane Oxidation (AOM) is the dominant electron-accepting process and characterized by a shallow Sulfate Methane Transition Zone (SMTZ). Net silica dissolution, total alkalinity (TA) maxima and carbonate peaks are found at shallow depths. Pore water profiles clearly show the uptake of K+, Mg2+ and Na + by, and release of Ca2+ and Sr2+ from the heterogeneous lacustrine sediments, which is likely controlled by chemical reactions of silicate minerals and changes in clay mineral composition. Iron (Fe2+) and manganese (Mn2+) maxima largely coincide with Ca2+ peaks and suggest a close link between Fe2+, Mn2+ and Ca2+ release. We hypothesize that the Fe2+ maxima below the SMTZ result from deep Fe3+ reduction linked to organic matter degradation, either driven by DOC escaping from the shallow sulfate reduction zone or slow degradation of recalcitrant POC. The chemical analysis of dissolved and solid iron species indicates that iron is essentially associated with clay minerals, which suggests that microbial iron reduction is influenced by clay mineral composition and bioavailability of clay mineral-bound Fe(III). Overall, our study suggests that postglacial seawater intrusion plays a major role in shaping redox zonation and geochemical profiles in the lacustrine sediments of the Late Quaternary.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: other
    Format: text
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...