GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (45)
  • 2017  (45)
Document type
Keywords
Language
Years
  • 2015-2019  (45)
Year
  • 1
    Keywords: Hochschulschrift ; Nordpolarmeer ; Meeresströmung
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource
    DDC: 550
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Hochschulschrift ; Südasien ; Holozän ; Monsun
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource
    DDC: 550
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Hannover : Leibniz Universität Hannover, Center for Health Economics Research Hannover
    Keywords: Forschungsbericht ; Gesundheitsökonomie ; Krankheitskosten ; Krankenkasse ; Therapieerfolg ; Medizinische Versorgung
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (50 Seiten, 534 KB)
    Language: German
    Note: Förderkennzeichen BMBF 01EH1201A. - Verbund-Nummer 01126269 , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Mit deutscher Zusammenfassung
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: Forschungsbericht ; Fotometrie ; Extinktion ; Aerosol ; Mehrkomponentenanalyse ; Computersimulation
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (55 Seiten, 1,96 MB) , Diagramme
    Language: German
    Note: Förderkennzeichen BMBF 02NUK022C. - Verbund-Nummer 01130925 , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Mit deutscher und englischer Zusammenfassung
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-06
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-06
    Description: Highlights • High lithogenic input in surface waters in the Panama Basin results in radiogenic εNd of up to +4.3. • Radiogenic Nd derived from particles can reset the Nd IC of water masses within time scales years. • Lithogenic input of REEs and corresponding Nd IC in surface waters are seasonally influenced. The distribution of dissolved rare earth elements (REEs) and neodymium isotopes (εNd) in the open ocean traces water mass mixing and provides information on lithogenic inputs to the source regions of the water masses. However, the processes influencing the REE budget at the ocean margins, in particular source and sink mechanisms, are not yet well quantified. In this study the first dissolved REE concentrations and Nd isotope compositions of seawater from the Panama Basin (RV Meteor cruise M90) in the Eastern Equatorial Pacific (EEP) are presented. The EEP is characterized by one of the world's largest oxygen minimum zones (OMZs). It is dominated by high particle fluxes that are expected to enhance the removal of REEs from the water column by scavenging. The measured REE concentrations peak at the surface indicating high lithogenic input, which is supported by shale-normalized REE patterns in surface waters and highly radiogenic εNd signatures ranging between +1.4 and +4.3, the latter value constituting the most radiogenic value measured for seawater to date. In contrast, intermediate and deep water REE concentrations are low compared to other Pacific Basins and suggest enhanced removal via scavenging associated with high particle fluxes. The εNd signatures of intermediate and deep waters are less radiogenic than surface waters ranging between −1.4 and +1.3 but significantly more radiogenic than source water masses in the EEP. The εNd signatures consequently do not reflect mixing of intermediate and deep water masses entering the Panama Basin but can only be explained by lithogenic inputs originating from source rocks with highly radiogenic Nd isotope signatures such as the Central American Volcanic Arc (εNd=+3 to +10). Our data demonstrate significant surface input via continental particles, which are partially dissolved in the water column and thereby release REEs and particularly radiogenic Nd isotope signatures to the subsurface ocean. Data obtained from a re-occupied station in the southern Panama Basin for the first time shows that these processes can partially reset water mass Nd isotope and REE signatures of the entire water column proximal to continental sources on time scales of a few years.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-02-06
    Description: The concentration and isotope composition of molybdenum (Mo) in sediments and sedimentary rocks are widely used proxies for anoxic conditions in the water column of paleo-marine systems. While the mechanisms leading to Mo fixation in modern restricted basins with anoxic and sulfidic (euxinic) conditions are reasonably well constrained, few studies have focused on Mo cycling in the context of open-marine anoxia. Here we present Mo data for water column particulate matter, modern surface sediments and a paleo-record covering the last 140,000 years from the Peruvian continental margin. Mo concentrations in late Holocene and Eemian (penultimate interglacial) shelf sediments off Peru range from ∼70 to 100 µg g−1, an extent of Mo enrichment that is thought to be indicative of (and limited to) euxinic systems. To investigate if this putative anomaly could be related to the occasional occurrence of sulfidic conditions in the water column overlying the Peruvian shelf, we compared trace metal (Mo, vanadium, uranium) enrichments in particulate matter from oxic, nitrate-reducing (nitrogenous) and sulfidic water masses. Coincident enrichments of iron (Fe) (oxyhydr)oxides and Mo in the nitrogenous water column as well as co-variation of dissolved Fe and Mo in the sediment pore water suggest that Mo is delivered to the sediment surface by Fe (oxyhydr)oxides. Most of these precipitate in the anoxic-nitrogenous water column due to oxidation of sediment-derived dissolved Fe with nitrate as a terminal electron acceptor. Upon reductive dissolution in the surface sediment, a fraction of the Fe and Mo is re-precipitated through interaction with pore water sulfide. The Fe- and nitrate-dependent mechanism of Mo accumulation proposed here is supported by the sedimentary Mo isotope composition, which is consistent with Mo adsorption onto Fe (oxyhydr)oxides. Trace metal co-variation patterns as well as Mo and nitrogen isotope systematics suggest that the same mechanism of Mo delivery caused the ‘anomalously’ high interglacial Mo accumulation rates in the paleo-record. Our findings suggest that Fe- and nitrate-dependent Mo shuttling under nitrogenous conditions needs to be considered a possible reason for sedimentary Mo enrichments during past periods of widespread anoxia in the open ocean.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: other
    Format: other
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-02-06
    Description: Highlights • First comprehensive seawater Nd isotope and REE data for the Laptev Sea. • Dissolved Nd isotopes, salinity and stable oxygen isotopes trace water masses. • No evidence for REE release from particles of the organic-rich Siberian Rivers. • Preferential estuarine LREE removal follows increasing salinity from 10 to 34. • Formation and melting of sea ice redistribute REEs within water column. Abstract Marine neodymium (Nd) isotope and rare earth element (REE) compositions are valuable tracers for present and past ocean circulation and continental inputs. Yet their supply via high latitude estuaries is largely unknown. Here we present a comprehensive dissolved Nd isotope (expressed as εNd values) and REE data set together with seawater stable oxygen isotope ( O) compositions of samples from the Laptev Sea recovered in two Arctic summers and one winter. The Laptev Sea is a shallow Siberian Shelf sea characterized by extensive river-runoff, sea-ice production and ice transport into the Arctic Ocean. The large variability in εNd (−6 to −17), REE concentrations (16 to 600 pmol/kg for Nd) and REE patterns is controlled by freshwater supply from distinct riverine sources and open ocean Arctic Atlantic Water. Strikingly and contrary to expectations, except for cerium no evidence for significant release of REEs from particulate phases is found, which is attributed to low amounts of suspended particulate matter and high dissolved organic carbon concentrations present in the contributing rivers. Essentially all shelf waters are depleted in light (L)REEs, while the distribution of the heavy REEs shows a deficiency at the surface and a pronounced excess in the bottom layer. This distribution is consistent with REE removal through coagulation of riverine nanoparticles and colloids starting at salinities near 10 and resulting in a drop of all REE concentrations by ∼30%. With increasing salinity preferential LREE removal is observable reaching ∼75% for Nd at a salinity of 34. Although the delayed onset of dissolved REE removal contrasts with most previous observations from other estuarine environments, it agrees remarkably well with results from recent experiments simulating estuarine mixing of seawater with organic-rich river waters. In addition, melting and formation of sea ice leads to further REE depletion at the surface and strong REE enrichment near the shelf bottom as a function of ice melting and brine transfer, respectively. The ice-related processes significantly affect the distribution of dissolved REEs in high-latitude estuaries and likely also similarly contribute to the redistribution of other dissolved seawater constituents.
    Type: Article , PeerReviewed
    Format: other
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-02-06
    Description: The Labrador Sea is one of the key areas for deep water formation driving the Atlantic thermohaline circulation and thus plays an important role in Northern Hemisphere climatic fluctuations. In order to better constrain the overturning processes and the origins of the distinct water masses, combined dissolved Hf–Nd isotopic compositions and rare earth element (REE) distribution patterns were obtained from four water depth profiles along a section across the Labrador Sea. These were complemented by one surface sample off the southern tip of Greenland, three shallow water samples off the coast of Newfoundland, and two deep water samples off Nova Scotia. Although light REEs are markedly enriched in the surface waters off the coast of Newfoundland compared to north Atlantic waters, the REE concentration profiles are essentially invariant throughout the water column across the Labrador Sea. The hafnium concentrations of surface waters exhibit a narrow range between 0.6 and 1 pmol/kg but are not significantly higher than at depth. Neodymium isotope signatures (ɛNd) vary from unradiogenic values between −16.8 and −14.9 at the surface to more radiogenic values near −11.0 at the bottom of the Labrador Sea mainly reflecting the advection of the Denmark Strait Overflow Water and North East Atlantic Deep Water, the signatures of which are influenced by weathering contributions from Icelandic basalts. Unlike Nd, water column radiogenic Hf isotope signatures (ɛHf) are more variable representing diverse weathering inputs from the surrounding landmasses. The least radiogenic seawater ɛHf signatures (up to −11.7) are found in surface waters close to Greenland and near the Canadian margin. This reflects the influence of recirculating Irminger Current Waters, which are affected by highly unradiogenic inputs from Greenland. A three to four ɛHf unit difference is observed between Denmark Strait Overflow Water (ɛHf ∼ −4) and North East Atlantic Deep Water (ɛHf ∼ −0.1), although their source waters have essentially the same ɛNd signature. This most likely reflects different weathering signals of hafnium delivered to Denmark Strait Overflow Water and North East Atlantic Deep Water (incongruent weathering of old rocks from Greenland versus basaltic rocks from Iceland). In addition, the ɛHf data resolve two layers within the main body of Labrador Sea Water not visible in the ɛNd distribution, which are shallow Labrador Sea Water (ɛHf ∼ −2) and deep Labrador Sea Water (ɛHf ∼ −4.5). The latter layer was formed between the late 1980’s and mid 1990’s during the last cold state of the Labrador Sea and underwent substantial modification since its formation through the admixture of Irminger Water, Iceland Slope Water and North East Atlantic Deep Water, which is reflected in its less radiogenic ɛHf signature. The overall behavior of Hf in the water column suggests its higher sensitivity to local changes in weathering inputs on annual to decadal timescales. Although application of Hf isotopes as a tracer for global water mass mixing is complicated by their susceptibility to incongruent weathering inputs they are a promising tracer of local processes in restricted basins such as the Labrador Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-09-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...