GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (6)
  • 2016  (6)
Document type
Years
  • 2015-2019  (6)
Year
  • 1
    Publication Date: 2019-09-23
    Description: Calanoid copepods and euphausiids are key components of marine zooplankton communities worldwide. Most euphausiids and several copepod species perform diel vertical migrations (DVMs) that contribute to the export of particulate and dissolved matter to midwater depths. In vast areas of the global ocean, and in particular in the eastern tropical Atlantic and Pacific, the daytime distribution depth of many migrating organisms corresponds to the core of the oxygen minimum zone (OMZ). At depth, the animals experience reduced temperature and oxygen partial pressure (pO2) and an increased carbon dioxide partial pressure (pCO2) compared to their near-surface nighttime habitat. Although it is well known that low oxygen levels can inhibit respiratory activity, the respiration response of tropical copepods and euphausiids to relevant pCO2, pO2 and temperature conditions remains poorly parameterized. Further, the regulation of ammonium excretion at OMZ conditions is generally not well understood. It was recently estimated that DVM-mediated ammonium supply considerably fuels bacterial anaerobic ammonium oxidation – a major loss process for fixed nitrogen in the ocean. These estimates were based on the implicit assumption that hypoxia or anoxia in combination with hypercapnia (elevated pCO2) does not result in a downregulation of ammonium excretion. Here we show that exposure to OMZ conditions can result in strong depression of respiration and ammonium excretion in calanoid copepods and euphausiids from the Eastern Tropical North Atlantic and the Eastern Tropical South Pacific. These physiological responses need to be taken into account when estimating DVM-mediated fluxes of carbon and nitrogen into OMZs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-01-27
    Description: Euphausiid (krill) and amphipod dynamics were studied during 2006–2011 by use of plankton nets in Kongsfjorden (79�N) and adjacent waters, also including limited sampling in Isfjorden (78�N) and Rijpfjorden (80�N). The objectives of the study were to assess how variations in physical characteristics across fjord systems affect the distribution and abundance of euphausiids and amphipods and the potential for these macrozooplankton species to reproduce in these waters. The abundances of euphausiids and amphipods were higher in Kongsfjorden than in Rijpfjorden and Isfjorden, and the highest abundances were observed at the innermost stations of Kongsfjorden, where Thysanoessa inermis and Themisto libellula dominated. The Atlantic species Thysanoessa longicaudata, Meganyctiphanes norvegica and Themisto abyssorum dominated at the outside Kongsfjorden. Inter-annual and seasonal variability in abundances of euphausiids and amphipods were evident. The presence of ripe euphausiids outside Kongsfjorden indicates that they may reproduce in these areas. Mature individuals of T. abyssorum were recorded mainly outside Kongsfjorden, whereas no mature or ripe T. libellula were present in both the inner and outer parts of this fjord. If the warming trend persists, as seen during the last decade, this would favour the Atlantic/boreal euphausiid species, while Arctic species, such as the amphipod T. libellula, may decline. Euphausiids and amphipods are major food of capelin (Mallotus villosus) and polar cod (Boreogadus saida), respectively, in this region, and changes in prey abundance will likely have an impact on the feeding dynamics of these important fish species.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    SPRINGER
    In:  EPIC3Polar Biology, SPRINGER, 39, pp. 1803-1817, ISSN: 0722-4060
    Publication Date: 2017-01-24
    Description: Our study deals with the lipid biochemistry of the krill community in the ecosystem of the high Arctic Kongsfjord (Svalbard). During the last decades, Kongsfjord experienced a change in krill species composition due to recent increased advection of Atlantic water masses carrying characteristic boreal as well as subtropical-boreal euphausiids into the ecosystem. The lipid biochemistry and trophic relationships of the species recently inhabiting the Arctic water masses are scarcely known, although a change in a krill population may have a significant impact on the ecosystem. A comparison of nutrition and energy storage strategies, stable isotopes, lipid profiles and fatty acid compositions showed remarkable differences between the krill species. These reflected the diverse feeding behaviours and specific adaptations to the environments of their origin: the boreal Meganyctiphanes norvegica and subtropical Nematoscelis megalops appear more carnivorous, have significantly lower mean lipid contents (29 % and 10 %, respectively) and a different energy storage pattern (triacylglycerols and polar lipids, respectively) than the arcto-boreal Thysanoessa inermis, which consists of up to 54 % of lipids mainly stored as wax esters (〉 40 %). These differences may have significant implications for the rapidly changing marine food-web of Kongsfjord - especially for higher trophic levels relying on the nutritional input of animal lipids.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-06-15
    Description: Recent studies have indicated a metabolic temperature sensitivity in both the arcto-boreal krill species Thysanoessa inermis and Thysanoessa raschii that may determine these species' abundance and population persistence at lower latitudes (up to 40° N). T. inermis currently dominates the krill community in the Barents Sea and in the high Arctic Kongsfjord. We aimed to increase the knowledge on the upper thermal limit found in the latter species by estimating the CT50 value (19.7 °C) (critical temperature at which 50 % of animals are reactive) and by linking metabolic rate measurements with molecular approaches. Optical oxygen sensors were used to measure respiration rates in steps of 2 °C (from 0 to 16 °C). To follow the temperature-mediated mechanisms of passive response, i.e., as a proxy for molecular stress, molecular chaperone heat shock protein 70 (Hsp70) sequences were extracted from a transcriptome assembly, and the gene expression kinetics were monitored during an acute temperature exposure to 6 or 10 °C with subsequent recovery at 4 °C. Our results showed upregulation of hsp70 genes, especially the structurally constitutive and mitochondrial isoforms. These findings confirmed the temperature sensitivity of T. inermis and showed that the thermal stress took place before reaching the upper temperature limit estimated by respirometry at 12 °C. This study provides a baseline for further investigations into the thermal tolerances of arcto-boreal Thysanoessa spp. and comparisons with other krill species under different climatic regimes, especially Antarctica.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Copernicus Publications
    In:  EPIC3Biogeosciences, Copernicus Publications, 13(8), pp. 2241-2255
    Publication Date: 2017-06-15
    Description: Calanoid copepods and euphausiids are key components of marine zooplankton communities worldwide. Most euphausiids and several copepod species perform diel vertical migrations (DVMs) that contribute to the export of particulate and dissolved matter to midwater depths. In vast areas of the global ocean, and in particular in the eastern tropical Atlantic and Pacific, the daytime distribution depth of many migrating organisms corresponds to the core of the oxygen minimum zone (OMZ). At depth, the animals experience reduced temperature and oxygen partial pressure (pO2) and an increased carbon dioxide partial pressure (pCO2) compared to their near-surface nighttime habitat. Although it is well known that low oxygen levels can inhibit respiratory activity, the respiration response of tropical copepods and euphausiids to relevant pCO2, pO2, and temperature conditions remains poorly parameterized. Further, the regulation of ammonium excretion at OMZ conditions is generally not well understood. It was recently estimated that DVM-mediated ammonium supply could fuel bacterial anaerobic ammonium oxidation – a major loss process for fixed nitrogen in the ocean considerably. These estimates were based on the implicit assumption that hypoxia or anoxia in combination with hypercapnia (elevated pCO2) does not result in a down-regulation of ammonium excretion. We exposed calanoid copepods from the Eastern Tropical North Atlantic (ETNA; Undinula vulgaris and Pleuromamma abdominalis) and euphausiids from the Eastern Tropical South Pacific (ETSP; Euphausia mucronata) andthe ETNA (Euphausia gibboides) to different temperatures, carbon dioxide and oxygen levels to study their survival, respiration and excretion rates at these conditions. An increase in temperature by 10°C led to an approximately 2-fold increase of the respiration and excretion rates of U.vulgaris (Q10, respiration=1.4; Q10,NH4-excretion=1.6), P. abdominalis (Q10, respiration=2.0; Q10,NH4-excretion=2.4) and E. gibboides (Q10, respiration=2.0; Q10,NH4-excretion=2.4; E. mucronata not tested). Exposure to differing carbon dioxide levels had no overall significant impact on the respiration or excretion rates. Species from the ETNA were less tolerant to low oxygen levels than E. mucronata from the ETSP, which survived exposure to anoxia at 13°C. Respiration and excretion rates were reduced upon exposure to low oxygen levels, albeit at different species-specific levels. Reduction of the excretion and respiration rates in ETNA species occurred at a pO2 of 0.6 (P. abdominalis) and 2.4 kPa (U. vulgaris and E.gibboides) at OMZ temperatures. Such low oxygen levels are normally not encountered by these species in the ETNA. E. mucronata however regularly migrates into the strongly hypoxic to anoxic core of the ETSP OMZ. Exposure to low oxygen levels led to a strong reduction of respiration and ammonium excretion in E. mucronata (pcrit respiration=0.6, pcrit NH4excretion=0.73). A drastic reduction of respiratory activity was also observed by other authors for euphausiids, squat lobsters and calanoid copepods, but was not yet accounted for when calculating DVM-mediated active fluxes into the ETSP OMZ. Current estimates of DVM-mediated active export of carbon and nitrogen into the ETSP OMZ are therefore likely too high and future efforts to calculate these export rates should take the physiological responses of migratory species to OMZ conditions into account.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    SPRINGER
    In:  EPIC3Polar Biology, SPRINGER, 39(10), pp. 1897-1912, ISSN: 0722-4060
    Publication Date: 2017-06-07
    Description: Near-bottom zooplankton communities have rarely been studied despite numerous reports of high zooplankton concentrations, probably due to methodological constraints. In Kongsfjorden, Svalbard, the near-bottom layer was studied for the first time by combining daytime deployments of a remotely operated vehicle (ROV), the optical zooplankton sensor moored on-sight key species investigation (MOKI), and Tucker trawl sampling. ROV data from the fjord entrance and the inner fjord showed high near-bottom abundances of euphausiids with a mean concentration of 17.3 ± 3.5 n x 100 m^-3. With the MOKI system, we observed varying numbers of euphausiids, amphipods, chaetognaths, and copepods on the seafloor at six stations. Light-induced zooplankton swarms reached densities in the order of 90,000 (euphausiids), 120,000 (amphipods), and 470,000 ind m^-3 (chaetognaths), whereas older copepodids of Calanus hyperboreus and C. glacialis did not respond to light. They were abundant at the seafloor and 5 and 15 m above and showed maximum abundance of 65,000 ind m^-3. Tucker trawl data provided an overview of the seasonal vertical distribution of euphausiids. The most abundant species Thysanoessa inermis reached near-bottom concentrations of 270 ind m^-3. Regional distribution was neither related to depth nor to location in the fjord. The taxa observed were all part of the pelagic community. Our observations suggest the presence of near-bottom macrozooplankton also in other regions and challenge the current view of bentho–pelagic coupling. Neglecting this community may cause severe underestimates of the stock of pelagic zooplankton, especially predatory species, which link secondary production with higher trophic levels.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...