GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: The Ocean Reference Station at 20°S, 85°W under the stratus clouds west of northern Chile is being maintained to provide ongoing climate-quality records of surface meteorology; air-sea fluxes of heat, freshwater, and momentum; and of upper ocean temperature, salinity, and velocity variability. The Stratus Ocean Reference Station (ORS Stratus) is supported by the National Oceanic and Atmospheric Administration’s (NOAA) Climate Observation Program. It is recovered and redeployed annually, with cruises that have come between October and December. During the 2008 cruise on the NOAA ship Ronald H. Brown to the ORS Stratus site, the primary activities were recovery of the Stratus 8 WHOI surface mooring that had been deployed in October 2007, deployment of a new (Stratus 9) WHOI surface mooring at that site; in-situ calibration of the buoy meteorological sensors by comparison with instrumentation put on board by staff of the NOAA Earth System Research Laboratory (ESRL); and observations of the stratus clouds and lower atmosphere by NOAA ESRL. A buoy for the Pacific tsunami warning system was also serviced in collaboration with the Hydrographic and Oceanographic Service of the Chilean Navy (SHOA). The DART (Deep-Ocean Assessment and Reporting of Tsunami) carries IMET sensors and subsurface oceanographic instruments. A DART II buoy was deployed north of the STRATUS buoy, by personnel from the National Data Buoy Center (NDBC) Argo floats and drifters were launched, and CTD casts carried out during the cruise. The ORS Stratus buoys are equipped with two Improved Meteorological (IMET) systems, which provide surface wind speed and direction, air temperature, relative humidity, barometric pressure, incoming shortwave radiation, incoming longwave radiation, precipitation rate, and sea surface temperature. Additionally, the Stratus 8 buoy received a partial CO2 detector from the Pacific Marine Environmental Laboratory (PMEL). IMET data are made available in near real time using satellite telemetry. The mooring line carries instruments to measure ocean salinity, temperature, and currents. The ESRL instrumentation used during the 2008 cruise included cloud radar, radiosonde balloons, and sensors for mean and turbulent surface meteorology. Finally, the cruise hosted a teacher participating in NOAA’s Teacher at Sea Program.
    Description: Funding was provided by the National Oceanic and Atmospheric Administration under Grant No. NA17RJ1223 for the Cooperative Institute for Climate and Ocean Research (CICOR).
    Keywords: Ronald H. Brown (Ship) Cruise RB08-06 ; Marine meteorology ; Oceanography
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © 2008 The Authors. This article is distributed under the terms of the Creative Commons Attribution 3.0 License. The definitive version was published in Ocean Science 4 (2008): 247-263, doi: 10.5194/os-4-247-2008
    Description: The current status of meteorological sensors used aboard ships and buoys to measure the air-sea fluxes of momentum, heat, and freshwater is reviewed. Methods of flux measurement by the bulk aerodynamic, inertial dissipation and eddy-correlation methods are considered; and areas are identified where improvements are needed in measurement of the basic variables. In some cases, what is required is the transition from emergent to operational technology, in others new technologies are needed. Uncertainties in measured winds caused by flow distortion over the ship are discussed; and the possible role of computational fluid mechanics models to obtain corrections is considered. Basic studies are also needed on the influence of waves and rain on the fluxes. The issues involved in the specification of sea surface temperature are described, and the relative merits of the available sensors are discussed. The improved capability of buoy-mounted systems will depend on the emergence of low-power instruments, and/or new means of increasing the available power capacity. Other issues covered include the continuing uncertainty about the performance of rain gauges and short-wave radiometers. Also, the requirements for new instruments to extend the range of observations to extreme wind conditions are outlined, and the latest developments in the measurement of aerosol fluxes by eddy-correlation are presented.
    Description: The lead author acknowledges support of the NOAA Climate Observation Program.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: The Woods Hole Oceanographic Institution (WHOI) Hawaii Ocean Timeseries (HOT) Site (WHOTS), 100 km north of Oahu, Hawaii, is intended to provide long-term, high-quality air-sea fluxes as a part of the NOAA Climate Observation Program. The WHOTS mooring also serves as a coordinated part of the HOT program, contributing to the goals of observing heat, fresh water and chemical fluxes at a site representative of the oligotrophic North Pacific Ocean. The approach is to maintain a surface mooring outfitted for meteorological and oceanographic measurements at a site near 22.75°N, 158°W by successive mooring turnarounds. These observations will be used to investigate air–sea interaction processes related to climate variability. The first four WHOTS moorings (WHOTS-1 through 4) were deployed in August 2004, July 2005, June 2006, and June 2007, respectively. This report documents recovery of the WHOTS-4 mooring and deployment of the fifth mooring (WHOTS-5). Both moorings used Surlyn foam buoys as the surface element and were outfitted with two Air–Sea Interaction Meteorology (ASIMET) systems. Each ASIMET system measures, records, and transmits via Argos satellite the surface meteorological variables necessary to compute air–sea fluxes of heat, moisture and momentum. The upper 155 m of the moorings were outfitted with oceanographic sensors for the measurement of temperature, conductivity and velocity in a cooperative effort with R. Lukas of the University of Hawaii. A pCO2 system was installed on the WHOTS-5 buoy in a cooperative effort with Chris Sabine at the Pacific Marine Environmental Laboratory. The WHOTS mooring turnaround was done on the University of Hawaii research vessel Kilo Moana, Cruise KM-08-08, by the Upper Ocean Processes Group of the Woods Hole Oceanographic Institution. The cruise took place between 3 and 11 June 2008. Operations began with deployment of the WHOTS-5 mooring on 5 June at approximately 22°46.1'N, 157°54.1'W in 4702 m of water. This was followed by meteorological intercomparisons and CTDs at the WHOTS-4 site. A period of calmer weather was taken advantage of to recover WHOTS-4 on 6 June 2008. The Kilo Moana then returned to the WHOTS-5 mooring for CTD operations and meteorological intercomparisons. This report describes these cruise operations, as well as some of the in-port operations and pre-cruise buoy preparations.
    Description: Funding was provided by the National Oceanic and Atmospheric Administration under Grant No. NA17RJ1223 for the Cooperative Institute for Climate and Ocean Research (CICOR).
    Keywords: Kilo Moana (Ship) Cruise KM0808 ; Ocean-atmosphere interaction ; Oceanographic buoys ; Marine meteorology
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...