GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Leukemia & Lymphoma, Informa UK Limited, Vol. 63, No. 3 ( 2022-02-23), p. 747-750
    Type of Medium: Online Resource
    ISSN: 1042-8194 , 1029-2403
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2022
    detail.hit.zdb_id: 2030637-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Informa UK Limited ; 2021
    In:  Leukemia & Lymphoma Vol. 62, No. 13 ( 2021-11-10), p. 3292-3295
    In: Leukemia & Lymphoma, Informa UK Limited, Vol. 62, No. 13 ( 2021-11-10), p. 3292-3295
    Type of Medium: Online Resource
    ISSN: 1042-8194 , 1029-2403
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2021
    detail.hit.zdb_id: 2030637-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Leukemia & Lymphoma, Informa UK Limited, Vol. 62, No. 14 ( 2021-12-06), p. 3420-3429
    Type of Medium: Online Resource
    ISSN: 1042-8194 , 1029-2403
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2021
    detail.hit.zdb_id: 2030637-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Genes, Chromosomes and Cancer, Wiley, Vol. 55, No. 1 ( 2016-01), p. 82-94
    Abstract: T‐cell prolymphocytic leukemia (T‐PLL) is a rare post‐thymic T‐cell neoplasm with aggressive clinical course and short overall survival. So far, due to the rareness of this disease, genetic data are available only from individual cases or small cohorts. In our study, we aimed at performing a comprehensive cytogenetic and molecular genetic characterization of T‐PLL comprising the largest cohort of patients with T‐PLL analyzed so far, including correlations between the respective markers and their impact on prognosis. Genetic abnormalities were found in all 51 cases with T‐PLL, most frequently involving the TCRA/D locus (86%). Deletions were detected for ATM (69%) and TP53 (31%), whereas i(8)(q10) was observed in 61% of cases. Mutations in ATM, TP53 , JAK1 , and JAK3 were detected in 73, 14, 6, and 21% of patients, respectively. Additionally, BCOR mutations were observed for the first time in a lymphoid malignancy (8%). Two distinct genetic subgroups of T‐PLL were identified: A large subset (86% of patients) showed abnormalities involving the TCRA/D locus activating the proto‐oncogenes TCL1 or MTCP1 , while the second group was characterized by a high frequency of TP53 mutations (4/7 cases). Further, analyses of overall survival identified JAK3 mutations as important prognostic marker, showing a significant negative impact. © 2015 Wiley Periodicals, Inc.
    Type of Medium: Online Resource
    ISSN: 1045-2257 , 1098-2264
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2016
    detail.hit.zdb_id: 1018988-9
    detail.hit.zdb_id: 1492641-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Leukemia, Springer Science and Business Media LLC, Vol. 37, No. 1 ( 2023-01), p. 252-252
    Type of Medium: Online Resource
    ISSN: 0887-6924 , 1476-5551
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2008023-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 138, No. Supplement 1 ( 2021-11-05), p. 273-273
    Abstract: Background: In AML and ALL the application of WHO classification and ELN guidelines requires a combination of cytogenetics and targeted sequencing for specific mutations to determine the diagnostic and prognostic subgroup. WGS and WTS have emerged as comprehensive techniques that allow the simultaneous analysis and identification of all genetic alterations in a single approach with possible turnaround times of 1 week. Aim: Evaluate the accuracy of WGS and WTS in providing all relevant genetic information in a clinical setting. Patients and Methods: The cohort comprised 738 AML, 293 BCP-ALL and 124 T-ALL. The diagnosis was established following WHO guidelines. WGS (100x, 2x151bp) and WTS (50 Mio reads, 2x101bp) were performed on a NovaSeq instrument. Variants were called with Strelka2, Manta and GATK using a tumor w/o normal pipeline, fusions with Arriba, STAR-Fusion and Manta. Results: The combination of WGS and WTS detected all chromosomal and molecular abnormalities in the AML and ALL cohorts relevant for disease stratification and prognostication as identified by chromosome banding analysis (CBA) and targeted panel sequencing (TPS). A very high concordance between CBA and WGS was revealed for the detection of balanced structural variants (SV) with the added benefit of WGS to also detect cytogenetically cryptic rearrangements (i.e.: ETV6-MN1, NUP98-KDM5A), which all were confirmed either by FISH or RT-PCR. Fusion calling by WTS identified 96% of the WHO subtype defining rearrangements and detected 20 additional fusion transcripts relevant for disease stratification (e.g. EP300-ZNF384, TCF3-HLF) including 9 fusion transcripts that led to prognostic reassignment or could serve as a potential treatment target. Breakpoints of unbalanced SV can occur in repetitive sequences of the genome, hampering the detection by WGS. However, adding copy number alteration (CNA) calls to the analyses allows also reliable identification of unbalanced SV. WGS outperformed CBA in cases with insufficient in vitro proliferation due to suboptimal pre-analytics (i.e. longer transport time) and identified 36 chromosomal aberrations in 12 cases with CBA not evaluable. WGS's independence of in vitro cell proliferation was most impactful in ALL: 40 T-ALL cases showed a normal karyotype according to CBA. WGS detected SVs in 16 (40%) and CNAs in 20 (50%) of these cases, confirming the normal karyotype for only 9 samples. In the BCP-ALL cohort, CNV analysis identified 29 low hypodiploid and 16 high hyperdiploid karyotypes, 6 of which were missed by CBA. Due to the higher resolution and unrestricted, genome-wide assessment, WGS detected relevant gene deletions (RB1, ERG, PAX5, CDKN2A, IKZF1, ETV6, BTG1) in 59% of ALL cases, providing additional diagnostic and prognostic information. In the AML cohort CBA and WGS detected 795 CNA concordantly. In addition WGS called 54 CNA with size 1-5 MB (below the detection limit of CBA), i.e. 3 BCOR deletions in inv(3)(q21q26) cases and 67 CNA with size & gt; 5 MB, which were missed by CBA. 35 CNA were missed by WGS due to small clone sizes (median 6% as determined by FISH). WGS detected copy neutral loss of heterozygosity (CN-LOH) in AML most frequently on 21q (n=17), 4q (n=15), 13q (n=15), 11q (n=13) and in T-ALL on 9p (n=19), mostly encompassing CDKN2A/B deletions. Expression profiling provided additional diagnostic information for 57 ALL cases (41 BCR-ABL1-like, 16 DUX4 rearranged) that can only insufficiently be obtained by WGS or CBA. WGS reliably detected all gene mutations with a VAF & gt; 15% (n = 647) identified by TPS encompassing especially all mutations in genes relevant for WHO diagnosis and prognostication. 26/171 mutations with a VAF & lt; 15% were missed by WGS. Evaluation of WGS data for 121 genes recurrently mutated in hematologic neoplasms revealed an additional 2 mutations per sample on average (range: 0-9) which might qualify as targets for therapy. Conclusions: WGS and WTS provide all necessary genetic information to accurately determine the diagnostic and prognostic subgroup according to WHO and ELN guidelines in AML and ALL. Compared to today's gold standards, these novel methods provide a comprehensive genome wide characterization with higher resolution that directly identifies genes of impact, offering the basis for targeted treatment selection and monitoring of residual disease. Both can be implemented with automated analysis pipelines, consequently reducing time and error rates. Figure 1 Figure 1. Disclosures Haferlach: MLL Munich Leukemia Laboratory: Other: Part ownership. Kern: MLL Munich Leukemia Laboratory: Other: Part ownership. Haferlach: MLL Munich Leukemia Laboratory: Other: Part ownership.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2021
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 136, No. Supplement 1 ( 2020-11-5), p. 16-17
    Abstract: Background: Genomic alterations are a hallmark of hematological malignancies and comprise small nucleotide variants, copy number alterations and structural variants (SV). SV lead to the co-localization of remote genomic material resulting in 2 different scenarios: 1. breakpoints are located within 2 genes leading to a chimeric fusion gene and a fusion transcript, 2. breakpoints are located outside of genes, frequently placing one nearby gene under the influence of the regulatory sequences of the partner, leading to a deregulated - usually increased - transcription. Aim: The frequency of fusion transcripts was determined across hematological entities in order to 1) identify recurrent partner genes across entities, 2) evaluate the specificity of fusion transcripts and genes involved in fusions for distinct entities. Cohort and Methods: Whole transcriptome sequencing (WTS) was performed in 3,549 patients in 25 different hematological entities (table). 101 bp paired-end reads were produced on a NovaSeq 6000 system (Illumina, San Diego, CA) with a yield between 35 and 125 million paired reads per sample. Potential fusions were called using 3 different callers (Arriba, STAR-Fusion, Manta), only fusions called by at least 2 callers, validated by whole genome sequencing (data available for all cases) and with at least one protein coding partner were kept for further analyses. Reciprocal fusion transcripts were counted as one fusion event. Results: In total 1,309 fusion transcripts were identified in 932 of 3,549 (26.3%) patients. 221 patients showed & gt; 1 fusion (2 fusions: 150, 3: 36, & gt;3: 35). 806 distinct fusion transcripts were divided into recurrent fusions (n=50) and unique fusions, i.e. found only in 1 case (n=756). Out of 932 patients with at least 1 fusion, 541 (58%) patients harbored a minimum of one recurrent fusion. The proportion of patients harboring any or a recurrent fusion varied substantially between different entities with high frequencies for both in CML (96.5%/96.5%), B-lineage ALL (53.1%/41.3%), AML (42.8%/31.2%), and T-lineage ALL (35.3%/12.6%). In several myeloid entities low fusion frequencies were observed (e.g. PMF, MDS/MPN-U, MDS, figure A). No fusion transcripts were detected in ET. Strikingly, fusions were detected in a substantial proportion of cases with lymphoid neoplasms but only very few occurred recurrently (e.g. T-PLL: 47.8%/4.3%, FL: 39.3%/4.9%, figure A). With regard to age, only patients with AML and T-ALL harboring recurrent fusions were significantly younger than corresponding cases without recurrent fusions (59 vs 71 yrs, p & lt;0.0001; 35 vs 38 yrs, p=0.02). Only in AML patients with unique fusions were older (70 vs 66 yrs, p=0.02), while no age differences were observed between cases with and without unique fusions in other entities. 23/50 (46%) of the recurrent fusions were specific for one entity (12 in myeloid, 11 in lymphatic entities), while the other 54% (27/50) were observed in 2 to 7 different entities. Of these 27 recurrent fusions, only 16 fusions were shared between myeloid and lymphatic entities, while 10 were restricted to myeloid and one fusion to lymphatic entities (figure B). In total 1,270 different genes were involved in the 806 distinct fusions, indicating a broad spectrum of potential functional impact. 54 genes were involved only in recurrent fusions, 27 genes in both recurrent and unique fusions, while 1,189 genes were solely involved in unique fusions. Four genes involved in recurrent fusions and 32 genes involved in unique fusions are FDA approved drug targets (Human Protein Atlas). Only 16% (199/1270) of the genes were involved in more than one fusion: 3 genes (ETV6, KMT2A, RUNX1) in 14 fusions, 2 genes (ABL1, BCR) in 11 fusions, 16 genes in 4 to 10 fusions, 38 genes in 3 fusions, 140 in 2 fusions. Several genes frequently involved in fusions in hematological malignancies (e.g. ABL1, ETV6, KMT2A) and 78/1189 genes only involved in unique fusions were also reported to be partners in fusions in non-hematological malignancies. Conclusions: As known, in CML and acute several leukemias a high proportion of patients harbor fusions of which many occur recurrently, suggesting a substantial pathogenic impact and, thus, requiring detection in a diagnostic work-up. In BCR-ABL1 negative chronic myeloid malignancies few fusions were observed while lymphoma patients carry frequently non-recurrent fusions with so far unknown impact on pathogenesis and prognosis. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2020
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 136, No. Supplement 1 ( 2020-11-5), p. 37-38
    Abstract: Background: Acquired somatic mutations are crucial for the development of the majority of cancers. In hematological malignancies, some molecular mutations are very specific for certain entities (e.g. BRAF in HCL, MYD88 in LPL), while others were detected in a variety of malignancies (e.g. mutations in TP53, TET2, DNMT3A, RUNX1). Moreover, mutations in genes related to CHIP (clonal haematopoiesis of indeterminate potential; ASXL1, TET2,DNMT3A) were detected in an age-related manner. Aim: (1) Analysis/comparison of mutation frequencies of 122 selected genes in 3096 cases with 28 different hematological malignancies for identification of "mutation-driven" entities. (2) Correlation of CHIP-related mutations with mutational landscapes. Methods: Whole-genome sequencing (WGS) was performed for all 3096 patients. For this, 151bp paired-end reads were generated on NovaSeq 6000 and HiSeqX machines (Illumina, San Diego, CA). The Illumina tumor/unmatched normal workflow was used for variant calling. All reported p-values are two-sided and were considered significant at p & lt;0.05. Results: Entities with the highest numbers of mutations (median n=4) and thus potentially with the largest impact of mutations on pathogenesis comprised aCML (range: 1-7), CMML (1-6), MDS/MPN-U (2-5) and s-AML (2-8), whereas the lowest numbers (median n=0) were observed for CML (0-3), MGUS (0-2), MLN_eo (0-3), NK cell neoplasm (0-3) and PPBL (0-2). In the total cohort of 3096 cases, the most frequently mutated genes were TET2 (14%), ASXL1 (13%), TP53 (10%), SF3B1 (9%), DNMT3A (9%) and SRSF2 (9%). Entities with high frequencies of specific mutations ( & gt; 50%) comprised: aCML (ASXL1, 86%), BPDCN (TET2, 67%), BL (TP53, 60%), CMML (TET2, 67%; ASXL1, 58%), FL (KMT2D, 87% and CREBBP, 73%), HCL (BRAF, 100%), LPL (MYD88, 98%; CXCR4, 51%), MDS/MPN-U (ASXL1, 60%), MPN (JAK2, 68%), B-NHL (TP53, 50%) and T-NHL (STAT3, 52%). Mutations enriched in distinct entities included SETBP1 (26% in MDS/MPN overlaps), CSF3R (30% in MDS/MPN-U), STAT3 (only in T-NHL and NK cell neoplasm, 52% and 23%), NOTCH1 and PHF6 (T-ALL, 38% and 30%) and MYC and ID3 (almost exclusively in BL, 30% each). Genes predominantly mutated in myeloid neoplasms comprised e.g. SF3B1 (with the exception of CLL), JAK2, NPM1, RUNX1, IDH2, CEBPA, STAG2, NF1 and GATA2. By contrast, mutations in KMT2D, MYD88, ARID1A, ATM, CXCR4, BIRC3 and CD79B were detected almost exclusively in lymphoid malignancies. A broad distribution across entities was observed for mutations in TET2, ASXL1,DNMT3A, TP53, BCOR and ETV6. Thus, the first three, i.e. CHIP-related genes were also mutated with a high frequency in lymphoid neoplasms. In line with this, gene mutations found in the largest number of entities comprise DNMT3A (n=23 entities), TET2 (n=21), ASXL1, TP53, NRAS (n=19, respectively), KRAS and BCOR (n=17, respectively). Further, we compared the mutational patterns of cases with at least one CHIP-associated mutation (n=920 cases in the total cohort, "CHIP+") with cases without such mutations (n=2176, "CHIP-") to decipher CHIP-correlated mutation patterns. Significant differences with respect to accompanying mutations were mainly detected for myeloid neoplasms (MDS, mutations in n=12 genes significantly different in CHIP+ vs. CHIP- without CHIP genes themselves; AML, n=7; MPN, n=4; aCML, n=2; CMML, n=1) but also for MPAL (n=3), T-ALL (n=2), B-ALL, FL and LPL (n=1, respectively). Mutations in TP53 were found significantly enriched in CHIP- cases in 4 different entities, moreover mutations in KRAS, WT1 and SF3B1 were more abundant in CHIP- cases (in CMML, AML and aCML, respectively). By contrast, CHIP+ cases were characterized by high frequencies of mutations in RUNX1 (in n=4 entities), SRSF2, IDH2, NRAS (n=3) and EZH2 (n=2). Conclusions: (1) Certain mutations showed a broad distribution within or even across the myeloid/lymphoid lineage, including CHIP-related mutations frequently detected also in lymphoid malignancies. (2) The median numbers of mutations were low in entities that are defined by chromosomal fusions (CML, MLN_eo) or in entities that are regarded as "pre-malignant" (MGUS, PPBL), while especially MDS/MPN overlap cases seem to be mutation-driven (high number of mutations). (3) We deciphered different mutation patterns in CHIP+ (RUNX1, SRSF2, IDH2, NRAS, EZH2) and CHIP- (TP53, KRAS, WT1, SF3B1) cases across all entities, suggesting differences in pathophysiology. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2020
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 140, No. Supplement 1 ( 2022-11-15), p. 2073-2074
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2022
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 140, No. Supplement 1 ( 2022-11-15), p. 2990-2991
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2022
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...