GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Society of Hematology ; 2015
    In:  Blood Vol. 126, No. 23 ( 2015-12-03), p. 2578-2578
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 2578-2578
    Abstract: Background: Mutations in RUNX1 have been reported in 5 to 20% of AML. RUNX1 mutated AML is associated with a myeloid rather than monocytic differentiation, shows a typical pattern of cytogenetic abnormalities with a high frequency of trisomy 8 or 13, has a typical pattern of additional molecular mutations with a high frequency of accompanying ASXL1 and SF3B1 mutations and is nearly mutually exclusive of NPM1 and CEBPA double mutations and other entity-defining genetic abnormalities. In a subset of patients with RUNX1 mutations loss of the wild-type allele can be assumed due to a high mutation load. The aim of this study was the detailed analysis of a subset of RUNX1 mutated AML with RUNX1 wild-type loss with respect to accompanying cytogenetic and molecular genetic abnormalities and prognostic impact. Patients and Methods: A cohort of 467 AML with RUNX1 mutations (mut) at diagnosis identified during diagnostic work-up in our laboratory were the basis of this study. Median age was 72 years (yrs) (range 18-91 yrs), and male:female ratio 296: 171. 366 patients had de novo AML, 77 s-AML following MDS, 24 t-AML. For all patients (pts) cytogenetics and for 341 data on FAB subtype was available. Mutation data was available for NPM1 (n=456), MLL-PTD (n=453), CEBPA (n=449), FLT3-ITD (n=457), FLT3-TKD (n=457), WT1 (n=398), ASXL1 (n=313), TP53 (n=231), DNMT3A (n=177), TET2 (n=174), NRAS (n=305), KRAS (n=213) and SF3B1 (n=119). 64 patients with a mutation load of RUNX1 mutation 〉 70% evaluated by sequencing analysis were selected for further analysis. All 64 cases were analysed by genomic arrays (SurePrint G3 ISCA CGH+SNP Microarray, Agilent, Waldbronn, Germany) to determine the copy number state and copy neutral loss of heterozygosity (CN-LOH). Median age was 73 yrs (range 24-87 yrs), and male:female ratio was 27: 37. 50 patients had de novo AML, 11 s-AML following MDS, 3 t-AML. Results: Array CGH revealed a cytogenetically cryptic deletion on the long arm of chromosome 21 encompassing the RUNX1 gene in 5/64 (8%) patients while a CN-LOH on 21q including the RUNX1 gene was observed in 45 cases (70%). Thus in 50 cases (78%) with a high RUNX1 mutation load a RUNX1 wild-type loss (wt-loss) was detected by array CGH. In 43% (6/14) of the remaining cases the high RUNX1 mutation load was caused by amplification of the long arm of chromosome 21 either due to gain of whole chromosomes 21 or to an isochromosome 21q. First we focused on the characterization of RUNX1 mutated cases with RUNX1 wt-loss. In 22/50 cases (44%) an aberrant karyotype was observed with a distinct aberration pattern. 11 cases harbored +13, 5 had +8 and 6 cases a loss of 7q. No other recurrent abnormalities were observed. With respect to concurrent mutations the following frequencies were found: ASXL1 (42%), FLT3 -ITD (34%), TET2 (21%), KRAS (11%), MLL-PTD (8%), NRAS (7%), and FLT3-TKD (6%). No NPM1 mutation or CEBPA double mutations were identified. Comparison of those cases with RUNX1 wt-loss to all other RUNX1 mutated AML (n=417) revealed a significantly higher frequency of +13 (22% vs 9%, p=0.01) and FLT3 -ITD (34% vs 19%, p=0.015). FAB subtypes M0 and M1 were more frequent (46% vs 12%, p 〈 0.001; 35% vs 22%, n.s.) and M2 and M4 less frequent (14% vs 46%, p 〈 0.0001; 5% vs 17%, n.s.). Survival analyses were restricted to 212 de novo AML pts with RUNX1 mut who received intensive chemotherapy (median overall survival (OS): 20 months (mo), median event-free survival (EFS): 12 mo). Median OS and EFS was shorter in patients with RUNX1 wt-loss compared to those without (15 vs 20 mo, n.s., 10 vs 12 mo, p=0.04). In univariate Cox regression analysis a negative impact on OS was observed for RAS mut (relative risk (RR): 2.2, p=0.005), male gender (RR: 1.6, p=0.02), and age (RR: 1.3 per decade, p 〈 0.001). Shorter EFS was associated with RUNX1 wt-loss (RR: 1.7, p=0.04), RAS mut (RR: 1.9, p=0.02) and age (RR: 1.2 per decade, p 〈 0.001). In multivariate analysis RAS mut (OS: RR: 2.4, p=0.002; EFS: RR: 2.0, p=0.008) and age (OS: RR: 1.3 per decade, p 〈 0.001; EFS: RR: 1.2 per decade, p 〈 0.001) had independent prognostic impact. Conclusions: RUNX1 mutated AML with wild-type loss is a distinct AML subset that does not overlap with any of the genetically defined WHO categories and is characterized by an immature phenotype (81% FAB Subtype M0 and M1) and a higher frequency of +13 and FLT3-ITD as compared to RUNX1 mutated AML without wild-type loss. Wild-type loss and RAS mutations are associated with inferior outcome in RUNX1 mutated AML. Disclosures Haferlach: MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Nadarajah:MLL Munich Leukemia Laboratory: Employment. Fasan:MLL Munich Leukemia Laboratory: Employment. Perglerová:MLL2 s.r.o.: Employment. Kern:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Schnittger:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 2841-2841
    Abstract: Myelodysplastic syndromes (MDS) and related disorders are a heterogeneous group of chronic myeloid neoplasms with a high propensity to acute myeloid leukemia. A cardinal feature of MDS, as revealed by the recent genetic studies, is a high frequency of mutations and copy number variations (CNVs) affecting epigenetic regulators, such as TET2, IDH1/2, DNMT3A, ASXL1, EZH2, and other genes, underscoring a major role of deregulated epigenetic regulation in MDS pathogenesis. Meanwhile, these mutations/deletions have different impacts on the phenotype and the clinical outcome of MDS, suggesting that it should be important to understand the underlying mechanism for abnormal epigenetic regulation for better classification and management of MDS. SETD2 and ASH1L are structurally related proteins that belong to the histone methyltransferase family of proteins commonly engaged in methylation of histone H3K36. Both genes have been reported to undergo frequent somatic mutations and copy number alterations, and also show abnormal gene expression in a variety of non-hematological cancers. Moreover, germline mutation of SETD2 has been implicated in overgrowth syndromes susceptible to various cancers. However, the role of alterations in these genes has not been examined in hematological malignancies including myelodysplasia. In this study, we interrogated somatic mutations and copy number variations, among a total of 1116 cases with MDS and myelodysplastic/myeloproliferative neoplasms (MDS/MPN), who had been analyzed by target deep sequencing (n=944), and single nucleotide polymorphism-array karyotyping (SNP-A) (n=222). Gene expression was analyzed in MDS cases and healthy controls, using publically available gene expression datasets. SETD2 mutations were found in 6 cases, including 2 with nonsense and 4 with missense mutations, and an additional 10 cases had gene deletions spanning 1.8-176 Mb regions commonly affecting the SETD2 locus in chromosome 3p21.31, where SETD2 represented the most frequently deleted gene within the commonly deleted region. SETD2 deletion significantly correlated with reduced SETD2 expression. Moreover, MDS cases showed a significantly higher SETD2 expression than healthy controls. In total, 16 cases had either mutations or deletions of the SETD2 gene, of which 70% (7 out of 10 cases with detailed diagnostic information) were RAEB-1/2 cases. SETD2 -mutated/deleted cases had frequent mutations in TP53 (n=4), SRSF2 (n=3), and ASXL1 (n=3) and showed a significantly poor prognosis compared to those without mutations/deletions (HR=3.82, 95%CI; 1.42-10.32, P=0.004). ASH1L, on the other hand, was mutated and amplified in 7 and 13 cases, respectively, of which a single case carried both mutation and amplification with the mutated allele being selectively amplified. All the mutations were missense variants, of which 3 were clustered between S1201 and S1209. MDS cases showed significantly higher expression of ASH1L compared to healthy controls, suggesting the role of ASH1L overexpression in MDS development. Frequent mutations in TET2 (n=8) and SF3B1 (n=6) were noted among the 19 cases with ASH1L lesions. RAEB-1/2 cases were less frequent (n=11) compared to SETD2-mutated/deleted cases. ASH1L mutations did not significantly affect overall survival compared to ASH1L-intact cases. Gene Set Expression Analysis (Broad Institute) on suppressed SETD2 and accelerated ASH1L demonstrated 2 distinct expression signatures most likely due to the differentially methylated H3K36. We described recurrent mutations and CNVs affecting two histone methyltransferase genes, which are thought to represent novel driver genes in MDS involved in epigenetic regulations. Given that SETD2 overexpression and reduced ASH1L expression are found in as many as 89% of MDS cases, deregulation of both genes might play a more role than expected from the incidence of mutations and CNVs alone. Although commonly involved in histone H3K36 methylation, both methyltransferases have distinct impacts on the pathogenesis and clinical outcome of MDS in terms of the mode of genetic alterations and their functional consequences: SETD2 was frequently affected by truncating mutations and gene deletions, whereas ASH1L underwent gene amplification without no truncating mutations, suggesting different gene targets for both methyltransferases, which should be further clarified through functional studies. Disclosures Alpermann: MLL Munich Leukemia Laboratory: Employment. Nadarajah:MLL Munich Leukemia Laboratory: Employment. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Kern:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Shih:Novartis: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 2857-2857
    Abstract: Background: The genomic landscape of hematological malignancies has been resolved mainly based on whole exome and whole genome sequencing, primarily targeting gene mutations. Beside mutations also gene fusions function as therapeutic targets, impressively shown for e.g. BCR-ABL1 and ETV6-PDGFRB. Hence, the need for a comprehensive genetic analysis is increasing, as it is the basis for precision medicine, selecting treatment based on genotype and providing markers for disease monitoring. Aim: To test the value of targeted RNA sequencing in a routine diagnostic work up. Patients and Methods: 38 cases were selected in which rearrangements involving KMT2A (n=8), RUNX1 (n=19), ETV6 (n=9), RARA (n=1) and JAK2 (n=1) had been identified by chromosome banding analysis (CBA) complemented by FISH analysis. In all cases the partner gene could not be identified using standard methods. Targeted RNA sequencing was performed using the TruSight RNA Fusion panel (Illumina, San Diego, CA) consisting of 7690 probes covering 507 genes known to be involved in gene fusions. Library was prepared according to manufacturer's protocol with ~50ng DNA extracted from fresh/frozen samples. This assay allows the capture of all targeted transcripts. Sequencing was performed on two NextSeq runs (Illumina, San Diego, CA) with 20 multiplexed samples including two samples with known fusions as positive control samples. Analysis was performed with the RNA-Seq Alignment App (BaseSpace Sequence Hub) using Star for Alignment and Manta for gene fusion calling with default parameters (Illumina, San Diego, CA). Results: In 22/38 cases with rearrangements involving KMT2A (n=8), RUNX1 (n=8), ETV6 (n=4), RARA (n=1) or JAK2 (n=1) this approach led to important new information: The following partner genes for KMT2A were identified: MLLT10 (n=2), MLLT1 (n=2), ITPR2, FLNC, ASXL2 and ARHGEF12. MLLT10 and MLLT1 are two of the most frequent partner genes of KMT2A, while KMT2A-ARHGEF12 fusions are rare. Fusion of KMT2A to ITPR2, FLNC, or ASXL2 have not been reported yet. Seven different partner genes were identified in RUNX1 translocated cases. These were PLAG1 (n=2), PRDM16, MECOM, ZFPM2, MAN1A2, N6AMT2, and KIAA1549L. PRDM1, MECOM and ZFPM2 have previously been described in the literature as RUNX1 partner genes but were not suspected in our cases as partner genes due to complex cytogenetic rearrangements in CBA. The other identified partner genes have not been described so far. Interestingly, PRDM1, MECOM, ZFPM2 and the newly identified PLAG1 are all members of the C2H2-type zinc finger gene family. Four different partner genes were identified in ETV6 rearranged cases: ABL1, CCDC126, CLPTM1L, and CFLAR-AS1. Most strikingly was the identification of the ETV6-ABL1 fusion, which could not be suspected by cytogenetics as the 5' ETV6 FISH signal was located on chromosome 7. This ETV6-ABL1 fusion was confirmed by conventional RT-PCR. In an ALL patient a JAK2-PPFIBP1 fusion was identified leading to classification as a BCR-ABL1-like ALL. In an APL patient showing an ins(17;11)(q12;q14q23) in chromosome banding analysis a ZBTB16-RARA fusion was identified and thus resistance to all-trans retinoic acid, arsenic trioxide, and anthracyclines can be predicted. All these fusions were not detectable by our routine RT-PCR analyses as these assays cover only the most frequently occurring breakpoints in fusions with known partner genes, but might miss very rare variants. For all yet undescribed fusion partners routine assays are not available. Based on the results of targeted RNA sequencing quantitative PCR assays for MRD monitoring can now be established. In 11 cases with a RUNX1 rearrangement and 5 cases with an ETV6 rearrangement no fusion transcript was identified. Further analyses will have to clarify whether in these cases no transcript was derived from the genomic rearrangement. Conclusions: 1) Targeted RNA sequencing was able to identify and characterize rare gene fusions and thus provided the basis for the design of RT-PCR based assays for monitoring MRD. 2) Targetable genetic aberrations were identified, which were not identifiable by chromosome banding analysis but would now lead to more individualized treatment. 3) Thus, targeted RNA sequencing may be a valuable tool in routine diagnostics for patients with rearrangements unresolved by standard techniques, also paving the way to precision medicine in a considerable number of patients. Disclosures Haferlach: MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Nadarajah:MLL Munich Leukemia Laboratory: Employment. Meggendorfer:MLL Munich Leukemia Laboratory: Employment. Dicht:MLL Munich Leukemia Laboratory: Employment. Stengel:MLL Munich Leukemia Laboratory: Employment. Kern:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 5511-5511
    Abstract: Background: Genetic testing is an integral part of modern diagnostics. Sequencing genomes or exomes in different consortia revealed novel aberrations with importance to hematologic classification, prognosis or therapy. However, a high number of low frequency variants were also found in healthy populations. This challenged the distinction between population variation (polymorphism) and disease associated changes based on early databases with limited extent. For diagnostic purposes, the distinction of somatic (acquired) variants from rare germline variants allows moving towards personalized genetic characterization including molecular markers for individual follow-up. Aim: 1) present an approach to distinguish between somatic or germline variants by comparison with matched tissue (buccal swap, nails), 2) define diagnostically relevant patterns for variant classification or database use. Patients and Methods: Variants were initially classified in a three-tier system: (A) Protein truncating variants (PTV) or changes with strong evidence in literature (e.g. JAK2V617F) were defined as actionable/disease associated. (B) Criteria for polymorphism were met, if population frequencies were available from two sources (1000 Genomes, ExAC). (C) Remaining, critical variants were sequenced in germline DNA (ACMG guidelines, Richards, 2015). We selected 88 patients with critical variants in peripheral blood (PB, n=29) or bone marrow (BM, n=59) and available DNA from buccal swaps (n=40), nails (n=31) or both (n=17). Samples were received for routine diagnostic assessment (suspected diagnosis: myelodysplastic syndrome or chronic myelomonocytic leukemia [n=56], myeloproliferative neoplasm [n=8] , acute myeloid leukemia [n=6] or B cell malignancy [n=18] ). From PB or BM, 829 analysis by Sanger-, 454- (Roche, Branford, CT) or Illumina sequencing (San Diego, CA) were performed (1-49 [median 6] genes/patient). Results: In 88 patients, we identified 74 actionable/disease associated changes, 67 polymorphisms and one or two variants (n=96) per patient that could not be classified in the previous categories, requiring matched germline DNA sequencing. We found that 35% (34/96) of these variants were also present in germline, although not listed in common polymorphism databases. Consequently, theses variants do not qualify as markers for clonality and follow-up. Of note, 19% of nails and 14% of all buccal swabs received in our laboratory were not analyzable due to low DNA amounts (not included in cohort). Importantly, DNA from both sources can contain low levels of somatic mutations. Next, we compared somatic and germline variants in terms of predicted effects on function, variant burden and population frequency, to identify patterns with relevance to future categorization. Firstly, predicted as damaging by PolyPhen algorithm were significantly more somatic (92%, 49/53) than germline variants (61%, 19/31, p 〈 0.001). Most variants (excluding PTVs) were found in TET2 (n=25). Of 11 confirmed somatic variants, 10 were located in conserved domains, while none of the germline variants was located in these domains. Secondly, germline variants had a median burden of 50% (40-59%) or 98% in one case, which is the expected result for variants derived from either one or both alleles. For somatic variants, burdens were observed between 2% and 100% (median 40%), representing the varying degree of malignant cells in PB or BM. For comparison, disease associated variants showed a similar distribution: 3-90% (median: 40%). Thirdly, we compared variants to ExAC data, the largest available set of exonic variants in healthy individuals (over 60,000). Only 14/34 (41%) germline variants were found in the ExAC data (population frequencies 〈 0.1%). However, 3/62 (5%) of our somatic variants also occurred in the ExAC set. Conclusions: A growing number of sequencing data outdated the traditional distinction between polymorphism and mutation. By comparison with DNA from buccal swabs or nails, we showed that somatic and germline variants have different global patterns (e.g. variant burden, predicted function), but the decision in individual cases based on in silico data can be misleading. Only sequencing germline DNA distinguishes somatic from germline variants on a personalized level and allows strategies to define germline variants potentially contributing to tumorigenesis in future studies. Disclosures Baer: MLL Munich Leukemia Laboratory: Employment. Nadarajah:MLL Munich Leukemia Laboratory: Employment. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Kern:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Other: Part Owner MLL Munich Leukemia Laboratory.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 700-700
    Abstract: Background: NPM1 mutations (mut) are considered the most frequent mutations in de novo acute myeloid leukemia (AML) and have been suggested as provisional entity in the WHO classification 2008. It has become clear that nearly all NPM1mut AML have additional mutations that may contribute to onset of AML by affecting different genetic pathways. However, it has not been evaluated yet whether the pattern of additional mutations varies between NPM1mut de novo AML and NPM1mut secondary AML (sAML) arising from a previous myelodysplastic syndrome (MDS). Aim: To evaluate the 1) genetic pattern associated with NPM1mut de novo AML and sAML, 2) chronologic sequence of mutations from MDS to sAML. Patients and Methods: 5,545 de novo AML and 504 sAML cases were analyzed during the last 9 years. The de novo cohort was comprised of 2,951 males and 2,594 females, median age was 65.7 years (y; range 17.5-93.1 y). The sAML cohort was comprised of 329 males and 175 females, median age was 71.7 y (range 29.3-91.8 y; p=0.004). All cases were analyzed for NPM1mut by a melting curve analysis. For more detailed analysis from these cohorts 359 NPM1mut de novo AML (162 male, 197 female; median age: 61.4 y, range: 17.8-88.0 y), and 21 sAML (12 male, 9 female; median age: 70.3 y, range: 44.2-87.4 y) were selected for mutation analysis in 13 different genes (ASXL1, CEBPA, DNMT3A, FLT3-ITD, FLT3-TKD, IDH1, IDH2, KRAS, MLL-PTD, NRAS, RUNX1, TET2, TP53, WT1). Paired samples from the diagnostic time points of both MDS and sAML, respectively, were available in all 21 sAML cases. For both time points an NPM1-specific quantitative real time PCR was performed in addition. Results: First the overall frequency of NPM1mut was calculated from the total cohort. NPM1mut was more frequent in de novo AML (1,737/5,545 cases; 31.2%) than in sAML (67/504; 13.3%) (p 〈 0.001). Frequencies for mutations in all other genes were calculated for the selected NPM1mut subcohorts only. In de novo AML DNMT3A was the most frequently mutated gene (204/359; 56.8%), followed by FLT3-ITD (n=157; 43.7%), TET2 (n=101; 28.1%), IDH2 (n=52; 14.5%), NRAS (n=50; 13.9%), FLT3-TKD (n=49; 13.6%), IDH1 (n=47; 13.1%), CEBPA (single mutated: n=30; 8.4%; no double mutated cases), WT1 (n=23; 6.4%), KRAS (n=16, 4.5%), ASXL1 (n=10; 2.8%) and RUNX1 (n=2; 0.6%). No mutations were detected in TP53 or MLL-PTD. In the sAML cohort of 21 NPM1mut cases the most frequent additional mutations were present in TET2 (n=12, 57.1%), followed by FLT3mut (7 ITD and 1TKD) (n=8, 38.1%), ASXL1 and DNMT3A (n=4, 19.0%, each) and each 2 (9.5%) in IDH1, IDH2, KRAS, NRAS, RUNX1 and WT1, respectively. Thus DNMT3Amut were significantly more frequent cooperating with NPM1mut in de novo AML (56.8% vs. 19.0%, p=0.001). In contrast, mutations in TET2 (57.1% vs 28.1%, p=0.005), ASXL1 (19% vs. 2.8%, p 〈 0.001) and RUNX1 (9.5% vs. 0.6%, p 〈 0.001) were more frequent in sAML. For none of the other mutations any significant difference between de novo and sAML was observed. Next, we evaluated the chronologic sequence of the emergence of the respective mutations by comparing the paired MDS and sAML samples. At MDS phase and at a sensitivity of 10-7 the NPM1 mutations were undetectable in 6 patients and detectable at a very low level (0.01-1%) in 8 pts. In contrast, in 7 cases the NPM1mut was already detectable at a level of 5-100% (median: 10%). At MDS phase the median number of additional mutations was 1 (range: 1-4), at sAML it increased to 3 (range: 1-5). All 12 TET2mut and all 4 DNMT3Amut cases carried this mutation already at MDS phase, thus these two genes can be regarded as early events. ASXL1 was present in 3 cases at MDS and was gained at AML in 1 case. IDH mutations (n=5) were stable in 3 and gained or lost in 1 patient each. RAS mutations were gained in 3 and lost in 1case. FLT3mut (n=8) were never detected at MDS but gained in all cases at sAML stage and thus can be regarded as late events. Median time from diagnosis of MDS to transformation to sAML was 9.2 months (range: 1.6 - 33.6 months). Median time to transformation was shorter in cases with TET2mut (8.2 vs.16.8 months, p=0.026) than in TET2 wildtype cases. No impact on time to transformation was seen for the other mutations. Conclusions: NPM1 mutations 1) occur less frequent in sAML than in de novo AML, 2) like FLT3mut are usually late events that drive transformation from MDS to sAML, 3) are frequently associated with TET2, ASXL1 and RUNX1 mutations in sAML whereas in de novo AML most frequently are accompanied by DNMT3A mutations. Disclosures Schnittger: MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Nadarajah:MLL Munich Leukemia Laboratory: Employment. Alpermann:MLL Munich Leukemia Laboratory: Employment. Meggendorfer:MLL Munich Leukemia Laboratory: Employment. Perglerová:MLL2 s.r.o.: Employment. Kern:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 120, No. 21 ( 2012-11-16), p. 657-657
    Abstract: Abstract 657 Introduction: RUNX1 mutations constitute disease-defining aberrations in acute myeloid leukemia (AML) and were demonstrated to be particularly frequent in secondary and de novo AML with normal karyotype or non-complex alterations and to confer an unfavorable prognosis. Monitoring minimal residual disease (MRD) in AML has been shown to provide prognostic information and is increasingly used for treatment decisions. A variety of molecular markers has been identified suitable for MRD assessment, yet there still is a lack of such markers in a significant number of patients. The use of RUNX1 mutations may bridge a gap. Aims: Patients and Methods: RUNX1 mutation screening was prospectively performed in 814 patients with AML at diagnosis (645 de novo, 109 s-AML, and 60 t-AML). The median age of the patients was 69.6 years (range: 1 – 93 years), including 375 female and 439 male patients, respectively. 50.5% (411/814) of cases presented with a normal karyotype, 38.8% (316/814) with non-complex cytogenetic alterations, 9.6% (78/814) with a complex aberrant karyotype, and 1.1% (9/814) with prognostically favorable cytogenetics. Mutation analysis was performed using a sensitive next-generation amplicon deep-sequencing assay (454 Life Sciences, Branford, CT). Moreover, in a subset of 44 AML patients and additional 59 retrospectively analyzed cases the prognostic impact of MRD levels of RUNX1 mutations was studied at a second time point after completion of intensive induction therapy (median sampling interval: 128 days after diagnosis; range 60 – 180 days). In these follow-up samples the RUNX1 mutations already detected at diagnosis were investigated with a higher coverage (835-fold median coverage) as compared to the diagnostic assessment (759-fold median coverage) resulting in a sensitivity level of 1%. Furthermore, in 57 patients paired samples from diagnosis and relapse were analyzed to assess the stability of RUNX1 mutations. Results: 211/814 patients (25.9%) were detected to carry RUNX1 mutations. The median clone size was 39% and revealed a significant heterogeneity ranging from 2% to 96%. 73.9% (156/211) of mutated patients carried one mutation only, whereas 26.1% (55/211) harbored two (n=46) or more (n=9) mutations. In detail, the 211 patients harbored a total number of 275 alterations in RUNX1: 42.5% (117/275) frame-shift mutations, 34.9% (96/275) missense, 14.2% (39/275) nonsense, 4.4% (12/275) exon-skipping/splicing, and 4.0% (11/275) in-frame insertion/deletion alterations, respectively. Regarding MRD assessment, patients were separated according to the median MRD level (3.92%; range 0.03% - 48.00%) into “good responders” (n=78) with MRD levels below 3.92% and “poor responders” (n=25) with MRD levels above 3.92%. This resulted in significant differences in both event-free survival (median 21.4 vs 5.7 months, p 〈 0.001) and overall survival (73.3% vs 66.1% at 2 years, p=0.016). Moreover, in 57 cases the stability of individual RUNX1 mutations was studied at the time of relapse. In 46/57 (80.7%) cases the same alterations detected at diagnosis were present at relapse, whilst in 2/57 (3.5%) cases the RUNX1 mutation from the diagnostic sample was no longer detectable at relapse. Importantly, in 7/57 (12.3%) patients novel RUNX1 mutations were detected in regions different from those affected at diagnosis. Conclusion: Next-generation deep-sequencing accurately detects and quantifies RUNX1 mutations in AML with high sensitivity. RUNX1 mutations qualify as patient-specific markers for individualized disease monitoring. Thus, the measurement of mutation load by next-generation sequencing may contribute to refine the assignment into distinct risk categories in AML. Analysis of RUNX1 mutations should be considered for the complete coding region at relapse to detect new RUNX1 mutations. Disclosures: Kohlmann: MLL Munich Leukemia Laboratory: Employment; Roche Diagnostics: Honoraria. Nadarajah:MLL Munich Leukemia Laboratory: Employment. Grossmann:MLL Munich Leukemia Laboratory: Employment. Alpermann:MLL Munich Leukemia Laboratory: Employment. Kern:MLL Munich Leukemia Laboratory: Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Equity Ownership. Schnittger:MLL Munich Leukemia Laboratory: Equity Ownership.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 1463-1463
    Abstract: Introduction: Relapse of AML after initial remission occurs in about 30-50% of patients (pts) and is associated with dismal outcome. The majority of pts relapse within the first 2 years after diagnosis and their clonal evolution has been extensively studied. Late relapses, however, are very rare and therefore poorly characterized. We set out to study pts who experience relapse 〉 3 years after initial diagnosis to depict the genetic profile and gain knowledge about the pathogenesis in these pts. Methods: We selected AML cases sent to our laboratory for diagnostic work-up from 2005 - 2015 and who relapsed 〉 3 years after initial diagnosis (Dx). Based on sample availability, whole exome sequencing (WES) was carried out for 31 pts at the time points of Dx and relapse as well as on matched remission samples that were available for 19 pts. Enrichment based library preparation was performed using the xGen Exome Research Panel and sequenced (2x151bp) on a NovaSeq instrument. Data was processed with BaseSpace using the BWA Enrichment app with BWA for Alignment (against hg19) and GATK for variant calling with default parameters. Data was subsequently loaded into BaseSpace Variant Interpreter to filter and prioritize variants of interest. Only passed protein changing variants were considered with an ExAC population frequency of less than 1% for further analysis. As control cohort, we identified patients that relapsed within 1 year (n=371) after Dx for comparison of genetic risk factors. Results: The cohort included 15 females and 16 males, aged 21 -75 years (median: 60 years). Relapse occurred 3.0 -8.1 years after Dx (median: 4.0 yrs). According to MRC criteria, pts were assigned to the following cytogenetic risk groups (cytogenetic data was not available for 2 pts): good risk, n=4 (14%); intermediate risk, n=22 (76%) and adverse risk, n=3 (10%). FLT3 internal tandem duplication (ITD) was identified in 5 of 29 tested pts (17%). When comparing pts that relapse within the first year after Dx to our cohort of pts with relapse after 〉 3 years, we observed a trend towards a lower frequency of high-risk genetic parameters in the latter group (adverse risk cytogenetics 18% vs 10%; FLT3-ITD, 32% vs 17%; TP53 mutation 8% vs 0%). However, this trend was not statistically significant. Cytogenetic changes between Dx and relapse were observed in 13/27 (48%) of pts analyzed at both time points. In 8/13 (61%) of these cases, a single cytogenetic aberration was gained at relapse, while a new complex karyotype was observed in 2/13 (15%) of relapsed pts and in 1 pt with complex karyotype at diagnosis, additional aberrations were detected at relapse. Furthermore, we identified cytogenetically independent clones between Dx and relapse in 2/13 (15%) cases. Next, we analyzed the molecular genetic evolution in our cohort. Overall, WES identified a total of 106 mutations in 30 genes associated with myeloid neoplasia (Figure 1). Following genes were mutated in 〉 10% of pts: NPM1 (13/31 of pts), FLT3 (10/31), IDH2, DNMT3A and RUNX1 (8/31, each), SRSF2 (6/31), BCOR (5/31), NRAS and IDH1 (4/31, each). When comparing the matched diagnostic and relapse samples, a total of 61 mutations were detectable at both time points. A total of 24 mutations present at Dx were lost at relapse. Most frequently, mutations in NRAS (n=4) and FLT3 (n=4) were not detectable in the relapse samples. Overall, 12/24 (50%) of mutations lost at relapse affected signaling pathways, followed by transcription factors and epigenetic modifiers (n=5, each). In contrast, 21 mutations were gained during disease progression. Ten of these mutations (48%) are predicted to result in truncation of a transcription factor with known role in normal hematopoiesis (RUNX1, n=4; ETV6 and BCOR, n= 2; WT1 and BCORL1, n=1). In addition, 4 mutations gained during disease progression affected tumor suppressor genes (NF1, n=2; TP53, n=1, ATM, n=1). In 6/19 (31%) of pts with available data mutations in epigenetic modifiers persisted in remission (DNMT3A, n=3; IDH1, SRSF2, and TET2, n=1). Conclusion: In our cohort of AML pts with relapses 〉 3 years after Dx, we observed a high frequency of cases that lost mutations affecting signaling pathways during disease progression and gained mutations in hematopoietic transcription factors, indicating that the relapse clone in these patients is promoted by aberrant differentiation of hematopoietic stem cells. Disclosures Hartmann: MLL Munich Leukemia Laboratory: Employment. Nadarajah:MLL Munich Leukemia Laboratory: Employment. Meggendorfer:MLL Munich Leukemia Laboratory: Employment. Stengel:MLL Munich Leukemia Laboratory: Employment. Kern:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 138, No. Supplement 1 ( 2021-11-05), p. 1117-1117
    Abstract: Background: Paroxysmal nocturnal hemoglobinuria (PNH) is a hemolytic anemia associated with severe thrombophilia and characterized by complement-mediated lysis of erythrocytes lacking glycosylphosphatidylinositol (GPI)-anchored proteins. In the majority of cases, GPI deficiency is caused by somatic mutations in the PIGA gene. Presence of PNH clones is associated with acquired aplastic anemia (AA) and can be found in patients with myelodysplastic syndrome (MDS) or rarely other myeloid neoplasms (MN). Flow cytometric analysis for deficiency of GPI-anchored proteins on multiple cell lineages detects PNH clones, and PIGA mutational analysis is not mandatory to establish the diagnosis. In contrast, molecular genetic analysis of targeted gene panels is widely used in the diagnostic workup of MN. We hypothesized that the inclusion of PIGA into the myeloid gene panel could identify obscure cases with PNH clones irrespective of the initial clinical suspicion. Aim: To assess the significance of incidental findings of mutations in PIGA in the diagnostic workup of MN. Methods: 20,320 consecutive patients undergoing sequencing analysis for a confirmed or suspected MN were analyzed for the presence of mutations in the PIGA gene. Patients with confirmed PNH analyzed only for PIGA were not included, and cases with previously known PIGA mutations were excluded from further analysis. DNA was isolated from peripheral blood (PB) or bone marrow, and sequencing was performed on NovaSeq after Illumina DNA Prep for Enrichment library preparation (Illumina, San Diego, CA) and hybrid capture of a 41 gene panel including the complete coding sequence of PIGA (IDT Inc., Coralville, IA); data was analyzed with Pisces and Pindel (BaseSpace, Illumina). Flow cytometry was performed on granulocytes, monocytes, and erythrocytes in PB using antibodies against GPI-anchored proteins (CD14, CD24, CD55, and CD59), fluorescein-labeled proaerolysin (FLAER) staining, and Navios cytometers; analysis was done using Kaluza software (both Beckman Coulter, Miami, FL). Results: PIGA mutations were newly identified in 67 patients (0.3%) undergoing targeted sequencing within the diagnostic workup of MN. 30 patients were excluded from further analysis as the gene panel had been requested for a MN associated with previously diagnosed PNH. From the remaining patients, PB for flow cytometry analysis could be obtained from 20 patients. Flow cytometry confirmed the presence of a PNH clone in 17 (85%) of these patients (median clone size: 41% for granulocytes, 54.5% for monocytes, and 12% for erythrocytes). In 3 patients (15%) with unexpected PIGA mutations, flow cytometry detected no PNH clone. The type of PIGA mutations differed significantly in those cases: Patients in whom a PNH clone was confirmed, showed protein-truncating frame-shift (41%) or nonsense (6%) mutations, splice site mutations (18%), or multiple mutations (35%) including at least one protein-truncating mutation at a median variant allele frequency (VAF) of 15.4% (range 2.0% to 50.1%). In contrast, patients without a PNH clone showed only singular missense mutations of PIGA with a VAF of 3.6% to 5.3% (Figure 1). Final diagnoses in patients with confirmed clones were sole PNH (n=9), or PNH clone associated with MDS (n=4), AA (n=3), and AML (n=1), and additional mutations in other genes were observed in 9 cases. While the initial clinical presentation included the differential diagnosis of PNH in some of the patients, flow cytometry was requested as a direct result of the PIGA mutation in 4 cases with an accompanying MN and in 3 patients without - the later showing a median latency of 6.5 years from the initial clinical presentation to the diagnosis. Con clusions: The inclusion of PIGA into a standardized targeted sequencing panel for MN helps to identify patients with PNH clones irrespective of the initial clinical suspicion but is not sufficient to rule out PNH. Protein-truncating PIGA mutations are highly specific for PNH clones whereas singular missense mutations may not necessarily effect GPI biosynthesis. Our data indicate that the incidental finding of a PIGA mutation in sequencing analysis shall entail flow cytometry of GPI-anchored proteins in PB. The potential clinical sequelae and the availability of specific treatment options such as complement inhibitors warrant the thorough exclusion of PNH in the diagnostic workup of suspected MN. Figure 1 Figure 1. Disclosures Hoermann: Novartis: Honoraria. Haferlach: MLL Munich Leukemia Laboratory: Other: Part ownership. Haferlach: MLL Munich Leukemia Laboratory: Other: Part ownership. Kern: MLL Munich Leukemia Laboratory: Other: Part ownership.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2021
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 140, No. Supplement 1 ( 2022-11-15), p. 1915-1916
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2022
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 3126-3126
    Abstract: Background: In chronic myeloid leukemia (CML) clonal chromosome aberrations in metaphases not carrying a t(9;22)(q34;q11) have been described during treatment with tyrosine kinase inhibitors (TKI), so-called Philadelphia-negative (Ph-) clones. Very rarely transformation to MDS was observed in patients carrying such Ph- clones but mainly restricted to patients harboring -7. Overall, the clinical significance of this phenomenon remains obscure. Aim: 1) Analyze in a large cohort of TKI-treated CML patients who developed Ph- clones the presence and occurrence of molecular mutations over time. 2) Evaluate whether molecular mutations are also present in CML patients who were at least in major molecular remission (MMR) and presented with a normal karyotype. Patients and Methods: First Cohort: 51 CML patients (pts, 23 males, 28 females; median age: 60 yrs, range: 37-84 yrs) with response to TKI (imatinib only: n=32, nilotinib only: n=2, imatinib and dasatinib or nilotinib: n=11, all three TKIs: n=6) who developed Ph- clones. Cytogenetics in these pts were as follows: +8 sole (n=24), -Y (n=8), -7 sole (n=4), +9 (n=2), other trisomies (n=4), 9 had other aberrations including some with combinations of two different clones (n=4). In median these abnormalities were present in 30% (range 8-100%) of analyzed metaphases. BCR-ABL1 levels at the time point of analysis were between 0 and 3.8 (median: 0.023) according to international scale. Second Cohort: 50 CML pts (24 males, 26 females; median age: 56 yrs, range: 21-83 yrs), who were at least in MMR and without development of any cytogenetic aberration after 3 years of imatinib treatment. Median time from start of therapy to analysis was 2.6 years (range 3 months to 14 yrs). All cases were analyzed with a pan-myeloid gene panel of 29 genes: ASXL1, BCOR, BRAF, CBL, DNMT3A, ETV6, EZH2, FLT3 (TKD), IDH1, IDH2, JAK2, KIT, KRAS, MLL-PTD, NOTCH1, NPM1, NRAS, PRPF40B, PTPN11, SF1, SF3A1, SF3B1, SRSF2, TET2, TP53, U2AF1, U2AF2 and ZRSR2. Either complete coding genes or hotspots were first amplified by a microdroplet-based assay (RainDance, Billerica, MA) and subsequently sequenced with a MiSeq instrument (Illumina, San Diego, CA). In addition, RUNX1 was sequenced on the 454 NGS platform (454 Life Sciences, Branford, CT). Results: In the first cohort 28 mutations were found in 19 patients, as 5 patients had 2 and 2 patients even 3 mutations.Thus,in 19/51 pts (37.3%) ≥1 mutation was detected. Median mutation load was 11.5% (range: 2-56%). In detail, mutations in the following genes were detected: ASXL1 (n=9), DNMT3A (n=7), RUNX1 (n=3), NRAS (n=2), TET2 (n=2) and one each in CBL, EZH2, IHD1, PRPF40B, and TP53. Subsequently, these mutations were evaluated in samples from earlier or later time points (18 pts with a total of 235 samples, range: 3-20 samples/pt). In 12 cases a sample from diagnosis of CML was available. In 2 cases a CBL and an ASXL1 mutation were already detectable at low levels, 1.4% and 2%, respectively, at the time of diagnosis and later increased with decreasing BCR-ABL1 levels. In all other 10 cases the mutations were not detectable at diagnosis and were for the first time detectable during TKI treatment (in median after 24 months after diagnosis, range 2-73 months). In the remaining 6 cases date of occurrence could not be determined by backtracking as all earlier samples available were positive for the respective mutation. However, the over time mutation levels were inversely related to BCR-ABL1 expression indicating the presence in independent clones. Within the second cohort with cases in MMR that remained cytogenetically normal only in 2 of the 50 pts (4%) mutations were detected. In one patient a DNMT3A mutation was detected that could be monitored for 8 years with constant low mutation load (3-6%). This was not detectable at diagnosis and occurred after 6 months on imatinib. Very similarly, in the second case a TET2 mutation was first detected after 6 months on imatinib with a mutation load of 2% that very slowly increased to 7% within 8 years. Conclusions: 1) In CML patients that develop Ph- clones other mutations occur in 37.3%. 2) In contrast, in randomly selected CML pts with MMR that are cytogenetically normal, molecular mutations can be detected in only 4%. 3) The clinical importance of molecular mutations in CML in MMR remains unclear. 4) However, these results implicate that chromosomal aberrations are an indicator for genomic instability, also at the molecular level. Disclosures Schnittger: MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Meggendorfer:MLL Munich Leukemia Laboratory: Employment. Nadarajah:MLL Munich Leukemia Laboratory: Employment. Alpermann:MLL Munich Leukemia Laboratory: Employment. Kern:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...