GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • English  (1)
Document type
Language
  • English  (1)
Years
  • 1
    Online Resource
    Online Resource
    Cambridge :Cambridge University Press,
    Keywords: Mass budget (Geophysics). ; Electronic books.
    Description / Table of Contents: Land and sea ice combined form the largest part of the Earth's cryosphere, responding to climate change over timescales ranging from seasons to millennia. This is a detailed and comprehensive overview of the observation and modelling of present and predicted future trends in the mass balance of ice on Earth.
    Type of Medium: Online Resource
    Pages: 1 online resource (664 pages)
    Edition: 1st ed.
    ISBN: 9780511187636
    DDC: 551.31
    Language: English
    Note: Cover -- Half-title -- Title -- Copyright -- Contents -- Contributors -- Foreword -- Preface -- 1 Introduction and background -- 1.1 Aims and objectives of the book -- 1.2 Importance of the cryosphere in the Earth system -- 1.2.1 Sea level -- 1.2.2 Ice-ocean-atmosphere feedbacks -- 1.3 Timescales of variability -- 1.4 Geographical context -- References -- Part I Observational techniques and methods -- 2 In situ measurement techniques: land ice -- 2.1 Introduction -- 2.2 Mass balance equations -- 2.3 Direct measurement of surface elevation change -- 2.3.1 Traditional surveying methods -- 2.3.2 Cartographic method: comparison of topographic maps from different years -- 2.3.3 Repeated altitude profiles by GPS -- 2.3.4 Coffee-can method -- 2.4 Measurement of mass balance components -- 2.4.1 Accumulation and ablation rate -- Stake readings -- Index methods -- Pit studies, firn and ice cores -- Annual cycles - oxygen isotopes, dust, chemistry -- Reference layers -- Automatic registrations -- Ground-penetrating radar (GPR) -- 2.4.2 Superimposed ice and internal accumulation -- 2.4.3 Error analysis -- 2.4.4 Balance velocity -- 2.4.5 Calving -- 2.4.6 Bottom mass balance (floating glaciers and ice shelves) -- Upward-pointing echo sounder -- Thickness change in bore holes, combined with strain-rate and surface balance measurements -- Mass flux divergence calculations -- The cavity beneath the glacier -- 2.5 Local mass balance equation -- 2.6 Conclusion -- References -- 3 In situ measurement techniques: sea ice -- 3.1 Current techniques -- 3.1.1 Submarine sonar profiling -- 3.1.2 Moored upward sonars -- 3.1.3 Airborne laser profilometry -- 3.1.4 Airborne electromagnetic techniques -- 3.1.5 Drilling -- 3.2 Possible future techniques -- 3.2.1 Sonar on AUVs and floats -- 3.2.2 Acoustic tomography -- 3.2.3 The use of microwave sensors -- References. , 4 Remote-sensing techniques -- 4.1 Introduction -- 4.2 Electromagnetic theory and basic principles -- 4.3 Satellites and sensors -- 4.3.1 Visible and infra-red sensors -- Landsat -- SPOT -- ASTER -- AVHRR -- 4.3.2 Synthetic aperture radars and scatterometers -- 4.3.3 Satellite altimetry -- Atmospheric corrections -- Orbits -- CryoSat -- The ice, clouds and elevation satellite, ICESat -- 4.3.4 Passive microwave radiometers (PMRs) -- 4.4 Land-ice mass balance -- 4.4.1 Direct measurement of volume changes -- Radar altimetry -- Laser altimetry -- Other methods of determining volume change -- 4.4.2 Measurement of mass balance components: budget approach -- Accumulation rates -- Ablation -- Iceberg calving -- Bottom mass balance of floating ice -- Grounding-line fluxes -- Determination of ice thickness -- Velocity and grounding-line estimation -- 4.4.3 Balance velocities and fluxes -- 4.5 Sea-ice mass balance: introduction -- 4.5.1 Sea-ice coverage - extent, concentration and type -- Retrieval of ice concentration and extent -- Ice types -- Ice types from passive microwave data -- Ice types from active microwave data -- 4.5.2 Sea-ice motion and deformation -- Retrieval of sea-ice motion -- High resolution ice motion from SAR -- Small-scale ice motion and deformation -- 4.5.3 Sea-ice thickness -- Radar altimetry -- Seasonal ice-thickness estimates from kinematics -- Ice surface temperature and ice thickness -- 4.6 Summary -- References -- Part II Modelling techniques and methods -- 5 Modelling land-ice surface mass balance -- 5.1 Introduction -- 5.2 The surface energy balance -- 5.2.1 Introduction -- 5.2.2 The incoming short-wave radiative flux -- 5.2.3 Surface albedo -- 5.2.4 The incoming long-wave radiative flux -- 5.2.5 The outgoing long-wave radiative flux -- 5.2.6 The fluxes of sensible and latent heat -- 5.2.7 The heat flux supplied by rain. , 5.2.8 Subsurface processes -- 5.3 The degree-day approach -- 5.4 The mass balance in ablation models -- 5.5 Introduction to modelling the mass balance at the scale of glaciers -- 5.6 Ablation models -- 5.6.1 Grids and forcing -- 5.6.2 Validation -- 5.7 Atmospheric models -- 5.7.1 Introduction -- 5.7.2 Global and regional atmospheric circulation models -- 5.7.3 Atmospheric and surface physics in the models -- 5.7.4 Scales, resolution and computing cost -- 5.7.5 Model performances and biasses -- 5.7.6 Meteorological analyses and short-term forecasts -- 5.8 Regression models -- 5.9 Comparison of the different types of models -- 5.10 List of symbols -- References -- 6 Modelling land-ice dynamics -- 6.1 Introduction -- 6.2 Glacier dynamics -- 6.2.1 Force balance -- Driving stress -- Resistive stresses -- Force balance in the horizontal direction -- Force balance in the vertical direction -- 6.2.2 Flow law -- 6.2.3 Velocities and strain rates -- 6.2.4 Thermodynamics -- 6.2.5 Continuity -- 6.2.6 Basal sliding and bed deformation -- 6.3 Hierarchy of models -- 6.3.1 Introduction -- 6.3.2 Lamellar flow -- 6.3.3 Including lateral drag -- 6.3.4 Ice-shelf spreading -- 6.3.5 Ice shelf/ice sheet interaction -- 6.4 Evaluating terrestrial ice-mass models -- 6.4.1 Terminology -- 6.4.2 Types of ice-mass models -- Prognostic models -- Diagnostic models -- 6.4.3 Model validation -- The EISMINT inter-comparison -- EISMINT levels one and two -- EISMINT level three -- Conclusions -- 6.4.4 Model calibration and confirmation -- Confirming models of ice velocity -- Confirming models of ice-mass temperature -- The use of RES data to confirm models of glacier flow -- 6.5 List of symbols -- References -- 7 Modelling the dynamic response of sea ice -- 7.1 Introduction -- 7.2 Selected observational sea-ice motion: mechanical and physical characteristics. , 7.2.1 Sea-ice drift, deformation and pressure ridges -- 7.2.2 Ice stress and physical properties -- 7.3 Modelling sea-ice drift and deformation -- 7.3.1 Equations of motion -- 7.3.2 Deformation scaling of momentum equations -- 7.4 Sea-ice mechanics -- 7.4.1 Aggregate isotropic sea-ice constitutive laws -- 7.4.2 Coulombic and fracture-based isotropic models -- 7.4.3 Effect of plastic ice interaction on modelled ice drift -- A mechanistic one-dimensional plastic system -- Comparison of large-scale simulated plastic drift and deformation characteristics -- Improvement of simulations by including 'inertial imbedding' -- The effect of rheology on outflow -- 7.5 Sea-ice thermodynamics -- 7.5.1 Idealized growth: the Stefan problem -- 7.5.2 Empirical analytic sea-ice growth models for seasonal ice -- 7.5.3 Full heat budget thermodynamic models -- 7.5.4 Effects of internal brine pockets and variable conductivity -- 7.6 Ice-thickness distribution theory: dynamic thermodynamic coupling -- 7.6.1 Evolution equations for the ice-thickness distribution -- 7.6.2 Consistency of isotropic plastic models with ridge building -- 7.6.3 Characteristics of thickness distribution models coupled to specified deformation -- 7.6.4 Two-level ice-thickness distribution -- 7.6.5 Relative characteristics of two-level and multi-level models in numerical simulations -- 7.6.6 Thickness strength coupling: kinematic waves and inertial variability -- Kinematic waves in sea ice -- Inertial variability in sea-ice deformation -- Ice arching with growth and advection -- 7.6.7 Ice-tide interaction and stationary shore fast ice -- 7.7 A selected hierarchy of dynamic thermodynamic simulations of the evolution of sea ice -- 7.7.1 Selected characteristics of ice-ocean circulation models -- 7.7.2 Multiple equilibrium states of mechanistic dynamic thermodynamic sea-ice models. , 7.7.3 Arctic Basin variable thickness simulations -- Ridged ice and sensitivity to mechanical parameters -- The relative role of dynamics and thermodynamics in historical variability -- 7.7.4 The response of sea ice to climate change: the effect of ice dynamics -- 7.8 Concluding remarks -- References -- Part III The mass balance of sea ice -- 8 Sea-ice observations -- 8.1 Introduction -- 8.2 Sea-ice observations -- 8.3 Sea-ice observations: the pre-satellite era -- 8.4 Sea-ice cover: the post-satellite era -- 8.5 Mean ice thickness and its variability -- 8.6 Current evidence for change -- 8.7 Consequences of change -- 8.8 Future prospects -- References -- 9 Sea-ice modelling -- 9.1 Brief overview of sea-ice models -- 9.1.1 Momentum equation -- 9.1.2 Thermodynamics -- 9.1.3 Conservation equations -- 9.2 Mean thickness -- 9.2.1 Spatial and temporal variability -- 9.2.2 Ice export -- 9.2.3 Sensitivity to model parameterizations -- 9.3 Modelling future changes in sea-ice mass balance -- 9.4 Summary and conclusions -- References -- Part IV The mass balance of the ice sheets -- 10 Greenland: recent mass balance observations -- 10.1 Introduction -- 10.1.1 The polar ice sheets -- 10.1.2 Greenland and sea-level change -- 10.1.3 Program for Arctic Regional Climate Assessment (PARCA) -- 10.2 Components of ice-sheet mass balance -- 10.2.1 Accumulation -- 10.2.2 Surface ablation -- 10.2.3 Ice discharge -- 10.3 PARCA measurements -- 10.3.1 Snow-accumulation rates -- Shallow ice coring -- Accumulation rates from satellite microwave data -- Accumulation rates from atmospheric analyses -- 10.3.2 Ice depth sounding and layer tracking -- 10.3.3 Ice velocities and glacier grounding lines from SAR interferometry -- 10.3.4 Ice-surface characteristics from satellite data -- Summer melt zones -- Surface temperature and albedo -- Snow facies. , 10.3.5 Automatic weather station (AWS) network and meteorological observations.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...