GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Wiley ; 2015
    In:  Fish and Fisheries Vol. 16, No. 2 ( 2015-06), p. 310-328
    In: Fish and Fisheries, Wiley, Vol. 16, No. 2 ( 2015-06), p. 310-328
    Abstract: We present a framework for evaluating fisheries management plans comprehensively, both rebuilding plans and others. The framework includes a first rapid appraisal of the likelihood that the plan will result in management meeting its objectives, and guides subsequent quantitative analyses of potential weaknesses in the proposed plan. The framework includes four steps: (i) evaluating if a set of management objectives, if achieved, would result in a sustainable fishery, (ii) using qualitative analysis of a bio‐economic model to evaluate whether the set of stock management tactics might be capable of achieving the specified fisheries objectives, (iii) using empirical criteria derived from the literature to evaluate if other management measures in the plan related to the ecological, social or economic context of the fishery actually contribute to sustainability, and (iv) carrying out quantitative simulations to compare alternative implementation options. Generally, several management measures have to be combined to increase stock size without sacrificing the economic benefits to the fishers remaining in the fishery. We demonstrate application of the framework for evaluating the stock rebuilding plan for plaice ( Pleuronectes platessa ) and sole ( Solea solea ) in the North Sea and, the management measures currently in place for the roundnose grenadier ( Coryphaenoides rupestris ) stock exploited to the west of the British Isles.
    Type of Medium: Online Resource
    ISSN: 1467-2960 , 1467-2979
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2015
    detail.hit.zdb_id: 2024569-5
    SSG: 21,3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Applied Ecology, Wiley, Vol. 47, No. 4 ( 2010-06-07), p. 751-758
    Type of Medium: Online Resource
    ISSN: 0021-8901 , 1365-2664
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2010
    detail.hit.zdb_id: 2020408-5
    detail.hit.zdb_id: 410405-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Applied Ecology, Wiley, Vol. 54, No. 6 ( 2017-12), p. 1765-1775
    Abstract: The large‐scale and region‐specific movements of shortfin mako sharks underscore the need for close cooperation amongst western North Atlantic nations and implementation of regionally and seasonally specific management strategies. The movement patterns also provide baseline information, which could be used in spatially explicit stock assessment models. Identification of high‐use areas by shortfin mako sharks provides focal areas for quantifying interactions with fisheries. The high harvest rate observed in our fisheries‐independent tracking study raises questions about the true rate of fisheries mortality experienced by shortfin mako sharks, calling for a cautionary interpretation of past stock assessments used to determine management policy for this highly migratory species of conservation concern.
    Type of Medium: Online Resource
    ISSN: 0021-8901 , 1365-2664
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2017
    detail.hit.zdb_id: 2020408-5
    detail.hit.zdb_id: 410405-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: ICES Journal of Marine Science, Oxford University Press (OUP), Vol. 67, No. 4 ( 2010-05-01), p. 732-744
    Abstract: Blanchard, J. L., Coll, M., Trenkel, V. M., Vergnon, R., Yemane, D., Jouffre, D., Link, J. S., and Shin, Y-J. 2010. Trend analysis of indicators: a comparison of recent changes in the status of marine ecosystems around the world. – ICES Journal of Marine Science, 67: 732–744. Time-series of ecological and exploitation indicators collected from 19 ecosystems were analysed to investigate whether there have been temporal trends in the status of fish communities. Using linear and non-linear statistical methods, trends are reported for six indicators (mean length of fish in the community, mean lifespan, proportion of predatory fish, total biomass of surveyed species, mean trophic level of landings, and inverse fishing pressure), and the redundancy of these indicators across ecosystems is evaluated. The expected direction of change for an ecosystem that is increasingly impacted by fishing is a decline in all indicators. A mixture of negative and positive directions of change is recorded, both within and among all ecosystems considered. No consistent patterns in the redundancy of the ecological indicators across ecosystems emerged from the analyses, confirming that each indicator provided complementary information on ecosystem status. The different trends in indicators may reflect differing historical exploitation patterns, management, and environmental regimes in these systems. Commitment to monitoring programmes and development of system-specific baseline, target, and threshold reference levels are required. Improved understanding of the responsiveness and performance of ecological indicators to management actions are needed to address adequately whether ecosystems are recovering from, or being further impacted by, fishing, and whether management targets are being met. The relative effects of multiple environmental and ecological processes as well as multiple human-induced stressors that characterize exploited ecosystems also need to be quantified.
    Type of Medium: Online Resource
    ISSN: 1095-9289 , 1054-3139
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2010
    detail.hit.zdb_id: 2463178-4
    detail.hit.zdb_id: 1468003-8
    detail.hit.zdb_id: 29056-7
    SSG: 12
    SSG: 21,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: ICES Journal of Marine Science, Oxford University Press (OUP), Vol. 69, No. 1 ( 2012-01-01), p. 8-22
    Abstract: Greenstreet, S. P. R., Fraser, H. M., Rogers, S. I., Trenkel, V. M., Simpson, S. D., and Pinnegar, J. K. 2012. Redundancy in metrics describing the composition, structure, and functioning of the North Sea demersal fish community. – ICES Journal of Marine Science, 69: 8–22. Broader ecosystem management objectives for North Sea demersal fish currently focus on restoring community size structure. However, most policy drivers explicitly concentrate on restoring and conserving biodiversity, and it has not yet been established that simply restoring demersal fish size composition will be sufficient to reverse declines in biodiversity and ensure a generally healthy community. If different aspects of community composition, structure, and function vary independently, then to monitor all aspects of community general health will require application of a suite of metrics. This assumes low redundancy among the metrics used in any such suite and implies that addressing biodiversity issues specifically will require explicit management objectives for particular biodiversity metrics. This issue of metric redundancy is addressed, and 15 metrics covering five main attributes of community composition, structure, and function are applied to groundfish survey data. Factor analysis suggested a new interpretation of the metric information and indicated that a minimum suite of seven metrics was necessary to ensure that all changes in the general health of the North Sea demersal fish community were monitored properly. Covariance among size-based and species-diversity metrics was low, implying that restoration of community size structure would not necessarily reverse declines in species diversity.
    Type of Medium: Online Resource
    ISSN: 1095-9289 , 1054-3139
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2012
    detail.hit.zdb_id: 2463178-4
    detail.hit.zdb_id: 1468003-8
    detail.hit.zdb_id: 29056-7
    SSG: 12
    SSG: 21,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2010
    In:  ICES Journal of Marine Science Vol. 67, No. 4 ( 2010-05-01), p. 668-676
    In: ICES Journal of Marine Science, Oxford University Press (OUP), Vol. 67, No. 4 ( 2010-05-01), p. 668-676
    Abstract: Doray, M., Mahévas, S., and Trenkel, V. M. 2010. Estimating gear efficiency in a combined acoustic and trawl survey, with reference to the spatial distribution of demersal fish. – ICES Journal of Marine Science, 67: 668–676. Few analyses have been performed to estimate the efficiency of trawls targeting demersal fish using the ratio of catches and acoustic densities. In summer 2006, acoustic and fishing data were collected simultaneously over 3 d by three fishing vessels equipped with identical pelagic trawls in the Bay of Biscay. Variography identified moderate spatial autocorrelation in the acoustic backscatter at a mean scale of 3 km, a scale slightly smaller than the mean haul length (3.5 km), indicating that fish horizontal availability did not influence trawl efficiency. Acoustic backscattering densities expressed as nautical area scattering coefficients (NASCs) recorded in the trawled layer were compared with equivalent NASC (ENASC) values calculated from the species composition in the trawl, fish-length structure, and available relationships between target strength and fish length. Estimates of trawl efficiency for hake-dominated trawls were computed as the slopes of the relationships ENASC = 0.008 NASC and ENASC = 0.18 NASC0.31 for trawls made by day and night, respectively. For the whole demersal community, the relationships were ENASC = 0.022 NASC and ENASC = 0.17 NASC0.33 for trawls made by day and night, respectively.
    Type of Medium: Online Resource
    ISSN: 1095-9289 , 1054-3139
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2010
    detail.hit.zdb_id: 2463178-4
    detail.hit.zdb_id: 1468003-8
    detail.hit.zdb_id: 29056-7
    SSG: 12
    SSG: 21,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: ICES Journal of Marine Science, Oxford University Press (OUP), Vol. 74, No. 9 ( 2017-12-01), p. 2333-2341
    Abstract: Marine environmental legislation is increasingly expressing a need to consider the quality of pelagic habitats. This paper uses the European Union marine strategy framework to explore the concept of good environmental status (GES) of pelagic habitat with the aim to build a wider understanding of the issue. Pelagic ecosystems have static, persistent and ephemeral features, with manageable human activities primarily impacting the persistent features. The paper explores defining the meaning of “good”, setting boundaries to assess pelagic habitat and the challenges of considering habitat biodiversity in a moving medium. It concludes that for pelagic habitats to be in GES and able to provide goods and services to humans, three conditions should be met: (i) all species present under current environmental conditions should be able to find the pelagic habitats essential to close their life cycles; (ii) biogeochemical regulation is maintained at normal levels; (iii) critical physical dynamics and movements of biota and water masses at multiple scales are not obstructed. Reference points for acceptable levels of each condition and how these may change over time in line with prevailing oceanographic conditions, should be discussed by knowledge brokers, managers and stakeholders. Managers should think about a habitat hydrography rather than a habitat geography. Setting the bounds of the habitats requires a consideration of dimension, scale and gradients. It is likely that to deal with the challenges caused by a dynamic environment and the relevance of differing spatial and temporal scales, we will need to integrate multidisciplinary empirical data sets with spatial and temporal models to assess and monitor progress towards, or displacement from GES of the pelagic habitat.
    Type of Medium: Online Resource
    ISSN: 1054-3139 , 1095-9289
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2017
    detail.hit.zdb_id: 2463178-4
    detail.hit.zdb_id: 1468003-8
    detail.hit.zdb_id: 29056-7
    SSG: 12
    SSG: 21,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Aquatic Living Resources, EDP Sciences, Vol. 22, No. 4 ( 2009-10), p. 433-445
    Type of Medium: Online Resource
    ISSN: 0990-7440 , 1765-2952
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2009
    detail.hit.zdb_id: 2019083-9
    detail.hit.zdb_id: 291280-6
    SSG: 12
    SSG: 21,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Fish and Fisheries, Wiley, Vol. 22, No. 6 ( 2021-11), p. 1167-1186
    Abstract: Management strategy evaluation (MSE) is the state‐of‐the‐art approach for testing and comparing management strategies in a way that accounts for multiple sources of uncertainty (e.g. monitoring, estimation, and implementation). Management strategy evaluation can help identify management strategies that are robust to uncertainty about the life history of the target species and its relationship to other species in the food web. Small pelagic fish (e.g. anchovy, herring and sardine) fulfil an important ecological role in marine food webs and present challenges to the use of MSE and other simulation‐based evaluation approaches. This is due to considerable stochastic variation in their ecology and life history, which leads to substantial observation and process uncertainty. Here, we summarize the current state of MSE for small pelagic fishes worldwide. We leverage expert input from ecologists and modellers to draw attention to sources of process and observation uncertainty for small pelagic species, providing examples from geographical regions where these species are ecologically, economically and culturally important. Temporal variation in recruitment and other life‐history rates, spatial structure and movement, and species interactions are key considerations for small pelagic fishes. We discuss tools for building these into the MSE process, with examples from existing fisheries. We argue that model complexity should be informed by management priorities and whether ecosystem information will be used to generate dynamics or to inform reference points. We recommend that our list of considerations be used in the initial phases of the MSE process for small pelagic fishes or to build complexity on existing single‐species models.
    Type of Medium: Online Resource
    ISSN: 1467-2960 , 1467-2979
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 2024569-5
    SSG: 21,3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2021
    In:  Reviews in Fish Biology and Fisheries Vol. 31, No. 4 ( 2021-12), p. 797-819
    In: Reviews in Fish Biology and Fisheries, Springer Science and Business Media LLC, Vol. 31, No. 4 ( 2021-12), p. 797-819
    Abstract: The benefits of physiological biomarkers, knowledge and concepts are well-established in fish and wildlife management as they confer the ability to understand mechanistic processes, identify cause-and-effect relationships, and develop predictive models. Although this approach is gaining momentum in the context of species conservation, the use of physiological biomarkers in exploited marine fish stock management and recovery plans remains relatively rare. Here, we present five essential issues to consider to implement physiological biomarkers in fisheries management: (i) choice of relevant biomarkers that have a well-known mechanistic basis, (ii) identification of species-specific biomarkers reflecting a meaningful timespan for management, (iii) selection of biomarkers compatible with data collection during routine scientific fisheries surveys, (iv) use of biomarkers as early-warning signals and complementary indicators of population-level changes in life history traits and (v) how physiological biomarkers may help to refine long-term population dynamic projections under climate change and management scenarios. Overall, if based on well-established mechanisms linked to individuals’ fitness, a focus on physiological biomarkers should help to better understand the mechanisms behind stock declines, changes in stock characteristics, and thus more efficiently manage marine fisheries and conserve populations. As this approach is transferable among species, locations, and times, the integration of physiological biomarkers in fisheries science has the potential to more broadly enhance assessments and management of fish stocks.
    Type of Medium: Online Resource
    ISSN: 0960-3166 , 1573-5184
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 30768-3
    detail.hit.zdb_id: 1498719-3
    SSG: 21,3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...