GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 9 (1997), S. 615-631 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The instability of an arbitrarily shaped zonal jet on a midlatitude β-plane is considered within a two-layer quasi-geostrophic model with O(1) linear friction. Depending on the horizontal and vertical shear of the jet, it is susceptible to both barotropic and baroclinic instabilities. The linear stability boundaries are determined numerically for a parameter regime relevant to the Gulfstream. The weakly nonlinear (finite amplitude) evolution of the instabilities is shown to be governed by a Ginzburg-Landau equation and for arbitrary jet shapes the coefficients in this equation are computed numerically. The finite amplitude state is shown to become unstable to Benjamin-Feir sideband instabilities. The mixed baroclinic/barotropic character of the primary instability is crucial to this sideband instability which is shown to lead to complicated spatio-temporal behavior of the jet. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...