GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-11-25
    Description: In order to understand the hydrothermal input of barium (Ba) to the ocean interior and the changes of Ba in the hydrothermal plume, we measured dissolved (〈0.2 μm) and particulate (〉0.2 μm) Ba concentrations, as well as stable isotopes, in the non-buoyant hydrothermal plume at the Rainbow hydrothermal vent field on the Mid-Atlantic Ridge. Samples were taken during a GEOTRACES compliant cruise (M176/2) onboard the German R/V Meteor from September to October 2021. Particulate samples were first leached to measure labile components and then digested to measure refractory components. Our investigation covered the plume with a high spatial resolution, extending from a distance of 200 m to 60 km away from the Rainbow hydrothermal vent field.
    Keywords: Barium, dissolved; Barium, labile particulate; Barium, particulate; Barium, particulate, refractory; Barium (Ba); Barium excess, particulate; Barium isotopes; calculated, 2 sigma; CTD/Rosette, ultra clean; CTD-UC; Depth, bathymetric; Depth, reference; DEPTH, water; Event label; GPF 21‐2_049, Rainbow Plume; hydrothermal plume; LATITUDE; LONGITUDE; M176/2; M176/2_10-3; M176/2_12-1; M176/2_13-3; M176/2_14-3; M176/2_15-3; M176/2_16-1; M176/2_17-2; M176/2_18-2; M176/2_19-2; M176/2_21-2; M176/2_23-1; M176/2_24-2; M176/2_4-2; M176/2_5-2; M176/2_6-3; M176/2_7-2; M176/2_8-3; M176/2_9-2; Meteor (1986); Rainbow hydrothermal vent; Sample code/label; South Atlantic Ocean; Station label; δ138Ba, dissolved; δ138Ba, labile particulate; δ138Ba, labile particulate, standard deviation; δ138Ba, particulate, refractory; δ138Ba, particulate, refractory, standard deviation; δ138Ba, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 1706 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Atmospheric aerosol deposition into the low latitude oligotrophic ocean is an important source of new nutrients for primary production. However, the resultant phytoplankton responses to aerosol deposition events, both in magnitude and changes in community composition, are poorly constrained. Here, we investigated this with 19 d of field and satellite observations for a site in the subtropical North Atlantic. During the observation period, surface dissolved aluminum concentrations alongside satellite-derived aerosol and precipitation data demonstrated the occurrence of both a dry deposition event associated with a dust storm and a wet deposition event associated with strong rainfall. The dry deposition event did not lead to any observable phytoplankton response, whereas the wet deposition event led to an approximate doubling of chlorophyll a, with Prochlorococcus becoming more dominant at the expense of Synechococcus. Bioassay experiments showed that phytoplankton were nitrogen limited, suggesting that the wet deposition event likely provided substantial aerosol-derived nitrogen, thereby alleviating the prevalent nutrient limitation and leading to the rapid observed phytoplankton response. These findings highlight the important role of wet deposition in driving rapid responses in both ocean productivity and phytoplankton community composition.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-29
    Description: Highlights • Negligible Ba removal observed in the Rainbow hydrothermal system. • Insignificant modification of Ba isotope composition of the vent fluid endmember. • Rainbow vent introduces isotopically light Ba (−0.17) to the deep Atlantic Ocean. • Hydrothermal inputs contribute 4.6 ± 2.2 Gmol/yr Ba to the ocean. Abstract The marine barium (Ba) cycle is closely connected to the short-timescale carbon cycle, and Ba serves as a valuable paleo proxy for export production, ocean alkalinity, and terrestrial inputs. However, the marine Ba budget is poorly constrained, particularly regarding the fluxes of hydrothermally sourced Ba, which hinders our understanding of the Ba cycle and use of Ba-based proxies. Recent studies have suggested a modern source-sink imbalance of Ba isotopes in the global ocean, with sources being overall isotopically heavier than the sinks, and the hydrothermal Ba inputs were considered isotopically heavy sources. In this study, we present the first investigation of Ba and its isotopes in a non-buoyant hydrothermal plume based on dissolved and particulate samples collected from the Rainbow hydrothermal vent field on the Mid-Atlantic Ridge. Our data reveal strong hydrothermal signals at near-field stations, as evidenced by helium isotopes, accompanied by elevated concentrations of dissolved and particulate Ba. Dissolved Ba isotope compositions (δ138Ba) in hydrothermally influenced deep waters (∼0.3 ) are lighter than at similar depths of far-field stations (∼0.45 ) in the Atlantic Ocean. The concentrations and isotopic compositions of dissolved and labile particulate Ba in the non-buoyant hydrothermal plume can be explained by conservative mixing between a Ba-enriched hydrothermal component and North Atlantic Deep Water. By extrapolating the correlations to the vent fluid endmember, our results suggest that there is negligible removal of Ba, and insignificant modification of Ba isotopic signatures, from the vent fluid endmember to the non-buoyant hydrothermal plume. This indicates that the Rainbow hydrothermal system introduces isotopically light Ba (−0.17 ± 0.05 ) to the deep Atlantic Ocean. We estimate that global hydrothermal inputs of Ba are 4.6 ± 2.2 Gmol/yr. These observations highlight the potential of hydrothermal Ba to be an isotopically light source component of the marine Ba isotope budget.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: other
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-04-15
    Description: Promoting effects of aluminum addition on chlorophyll biosynthesis and growth of two cultured iron‐limited marine diatoms Linbin Zhou CAS Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou China Marine Biogeochemistry Division GEOMAR Helmholtz Centre for Ocean Research Kiel Germany University of Chinese Academy of Sciences Beijing China https://orcid.org/0000-0001-7230-4116 Fengjie Liu Marine Biogeochemistry Division GEOMAR Helmholtz Centre for Ocean Research Kiel Germany Grantham Institute—Climate Change and the Environment, Department of Life Sciences Imperial College London London UK Eric P. Achterberg Marine Biogeochemistry Division GEOMAR Helmholtz Centre for Ocean Research Kiel Germany Anja Engel Marine Biogeochemistry Division GEOMAR Helmholtz Centre for Ocean Research Kiel Germany https://orcid.org/0000-0002-1042-1955 Peter G.C. Campbell Institut National de la Recherche Scientifique Centre Eau Terre Environnement Quebec Canada https://orcid.org/0000-0001-7160-4571 Claude Fortin Institut National de la Recherche Scientifique Centre Eau Terre Environnement Quebec Canada https://orcid.org/0000-0002-2479-1869 Liangmin Huang CAS Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou China University of Chinese Academy of Sciences Beijing China Yehui Tan CAS Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou China University of Chinese Academy of Sciences Beijing China Abstract Aluminum (Al) may play a role in the ocean's capacity for absorbing atmospheric CO 2 via influencing carbon fixation, export, and sequestration. Aluminum fertilization, especially in iron (Fe)‐limited high‐nutrient, low‐chlorophyll ocean regions, has been proposed as a potential CO 2 removal strategy to mitigate global warming. However, how Al addition would influence the solubility and bioavailability of Fe as well as the physiology of Fe‐limited phytoplankton has not yet been examined. Here, we show that Al addition (20 and 100 nM) had little influence on the Fe solubility in surface seawater and decreased the Fe bio‐uptake by 11–22% in Fe‐limited diatom Thalassiosira weissflogii in Fe‐buffered media. On the other hand, the Al addition significantly increased the rate of chlorophyll biosynthesis by 45–60% for Fe‐limited T. weissflogii and 81–102% for Fe‐limited Thalassiosira pseudonana , as well as their cell size, cellular chlorophyll content, photosynthetic quantum efficiency ( F v / F m ) and growth rate. Under Fe‐sufficient conditions, the Al addition still led to an increased growth rate, though the beneficial effects of Al addition on chlorophyll biosynthesis were no longer apparent. These results suggest that Al may facilitate chlorophyll biosynthesis and benefit the photosynthetic efficiency and growth of Fe‐limited diatoms. We speculate that Al addition may enhance intracellular Fe use efficiency for chlorophyll biosynthesis by facilitating the superoxide‐mediated intracellular reduction of Fe(III) to Fe(II). Our study provides new evidence and support for the iron–aluminum hypothesis.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...