GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Joerg, Philip Claudio; Morsdorf, Felix; Zemp, Michael (2012): Uncertainty assessment of multi-temporal airborne laser scanning data: A case study on an Alpine glacier. Remote Sensing of Environment, 127, 118-129, https://doi.org/10.1016/j.rse.2012.08.012
    Publication Date: 2023-01-13
    Description: This dataset contains multi-temporal raster geotiff data of the Findelengletscher, Valais, Switzerland (46° N, 7° 52' E), documenting the glacier change in the period 2005-2010. The data is available in the Swiss datum CH1903 (LV03). Elevations are in meters in the Swiss LN02. The spatial resolution is one meter. The airborne laser scanning (LiDAR) point cloud data was interpolated into a raster grid in Matlab (average of point elevations per grid cell). Empty cells were interpolated using a least squares method without changing known values. Moreover, the extrapolation behavior was linear. There are four data sets available, from October 28/29, 2005; October 4, 2009; April 10, 2010 and September 29, 2010.
    Keywords: File format; File name; File size; Findelengletscher; GLAC; Sampling/measurements on glacier; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 16 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-23
    Description: Glaciers in the European Alps are known to be strongly affected by global climate change. Here we provide temporally consistent changes in glacier area, surface elevation and ice mass over the entire European Alps between 2000 and 2014. Our measurements show strong glacier surface lowering throughout the European Alps with regional variability in average ice thickness changes (-0.5 to -0.9 ma-1). For the entire Alps we estimate a mass loss of 1.3±0.2 Gta-1 (2000-2014). Our results provide important information for future socio-economic research, such as water resource management, tourism and risk assessment, and for the calibration and validation of glacier change projections. The dataset includes glacier elevation change maps (GeoTiffs) of the entire European Alps for the periods 2000-2012 and 2000-2014. Elevation changes are derived from differencing Digital Elevation Models (DEMs) of the SRTM and TanDEM-X satellite missions. Average surface elevation change rates (ma-1) were calculated based on specifically generated glacier outlines (2000, 2011 & 2014) and outlines of the Randolph Glacier Inventory (V6.0 Central Europe). Elevation change maps are cropped to Randolph Glacier Inventory outlines and the spatial union of specific glacier outlines from 2000 and 2011 (for elevation change 2000-2012) and 2000 and 2014 (for elevation change 2000-2014), respectively. See the associated publication for further details regarding the datasets and calculation of surface elevation change and geodetic mass change with a temporal mean area. All elevation change maps are provided as GeoTiffs with a spatial resolution of approximately 30m. Please note that the provided elevation change measurements are not filtered (no outlier removal applied). The observation period of each raster cell is measured in years between the respective TanDEM-X DEM and the SRTM reference DEM. As reference date the mean date of the SRTM mission (2000-02-16) is used.
    Keywords: AlpineRegion; European Alps; File format; File name; File size; geodetic mass balance; glacier elevation change; SRTM; TanDEM-X; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 8 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: The Earth climate system is out of energy balance, and heat has accumulated continuously over the past decades, warming the ocean, the land, the cryosphere, and the atmosphere. According to the Sixth Assessment Report by Working Group I of the Intergovernmental Panel on Climate Change, this planetary warming over multiple decades is human-driven and results in unprecedented and committed changes to the Earth system, with adverse impacts for ecosystems and human systems. The Earth heat inventory provides a measure of the Earth energy imbalance (EEI) and allows for quantifying how much heat has accumulated in the Earth system, as well as where the heat is stored. Here we show that the Earth system has continued to accumulate heat, with 381±61 ZJ accumulated from 1971 to 2020. This is equivalent to a heating rate (i.e., the EEI) of 0.48±0.1 W m−2. The majority, about 89 %, of this heat is stored in the ocean, followed by about 6 % on land, 1 % in the atmosphere, and about 4 % available for melting the cryosphere. Over the most recent period (2006–2020), the EEI amounts to 0.76±0.2 W m−2. The Earth energy imbalance is the most fundamental global climate indicator that the scientific community and the public can use as the measure of how well the world is doing in the task of bringing anthropogenic climate change under control. Moreover, this indicator is highly complementary to other established ones like global mean surface temperature as it represents a robust measure of the rate of climate change and its future commitment. We call for an implementation of the Earth energy imbalance into the Paris Agreement's Global Stocktake based on best available science. The Earth heat inventory in this study, updated from von Schuckmann et al. (2020), is underpinned by worldwide multidisciplinary collaboration and demonstrates the critical importance of concerted international efforts for climate change monitoring and community-based recommendations and we also call for urgently needed actions for enabling continuity, archiving, rescuing, and calibrating efforts to assure improved and long-term monitoring capacity of the global climate observing system. The data for the Earth heat inventory are publicly available, and more details are provided in Table 4.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
  • 5
    Publication Date: 2022-05-27
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 102(10), (2021): E1897–E1935, https://doi.org/10.1175/BAMS-D-19-0316.1.
    Description: Life on Earth vitally depends on the availability of water. Human pressure on freshwater resources is increasing, as is human exposure to weather-related extremes (droughts, storms, floods) caused by climate change. Understanding these changes is pivotal for developing mitigation and adaptation strategies. The Global Climate Observing System (GCOS) defines a suite of essential climate variables (ECVs), many related to the water cycle, required to systematically monitor Earth’s climate system. Since long-term observations of these ECVs are derived from different observation techniques, platforms, instruments, and retrieval algorithms, they often lack the accuracy, completeness, and resolution, to consistently characterize water cycle variability at multiple spatial and temporal scales. Here, we review the capability of ground-based and remotely sensed observations of water cycle ECVs to consistently observe the hydrological cycle. We evaluate the relevant land, atmosphere, and ocean water storages and the fluxes between them, including anthropogenic water use. Particularly, we assess how well they close on multiple temporal and spatial scales. On this basis, we discuss gaps in observation systems and formulate guidelines for future water cycle observation strategies. We conclude that, while long-term water cycle monitoring has greatly advanced in the past, many observational gaps still need to be overcome to close the water budget and enable a comprehensive and consistent assessment across scales. Trends in water cycle components can only be observed with great uncertainty, mainly due to insufficient length and homogeneity. An advanced closure of the water cycle requires improved model–data synthesis capabilities, particularly at regional to local scales.
    Description: WD acknowledges ESA’s QA4EO (ISMN) and CCI Soil Moisture projects. WD, CRV, AG, and KL acknowledge the G3P project, which has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement 870353. MIH and MS acknowledge ESA’s CCI Water Vapour project. MS and RH acknowledges the support by the EUMETSAT member states through CM SAF. DGM acknowledges support from the European Research Council (ERC) under Grant Agreement 715254 (DRY–2–DRY). Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004).
    Description: 2022-04-01
    Keywords: Hydrologic cycle ; Satellite observations ; Surface fluxes ; Surface observations ; Water masses/storage ; Water budget/balance
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...