GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-12-05
    Description: To explore the dynamic mechanism of continental rifting within a convergent setting, we determine the first P wave radial anisotropic tomography beneath the Woodlark rift in southeastern Papua New Guinea, which develops within the obliquely colliding zone between the Australian and southwest Pacific plates. The rift zone is depicted as localized low‐velocity anomalies with positive radial anisotropy, which rules out a dominant role of active mantle upwelling in promoting the rift development and favors passive rifting with decompression melting as main processes. Downwelling slab relics in the upper mantle bounding the rift zone are revealed based on observed high‐velocity anomalies and negative radial anisotropy, which may contribute to the ultra‐high pressure rock exhumations and rift initiation. Our observations thus indicate that the Woodlark rift follows a passive model and is mainly driven by slab pull from the northward subduction of the Solomon plate.
    Description: Plain Language Summary: The Woodlark rift in Papua New Guinea develops within the shear zone between the Australian and southwest Pacific plates and is one of the youngest and most rapidly extending continental rifts in the world. In this work, we analyze teleseismic P wave arrivals to study both 3‐D velocity and radial anisotropy structures of the upper mantle, offering new evidence to understand rift initiation under a generally convergent setting. Slab remnants in the upper mantle bordering the rift zone are detected and sinking into the deeper mantle. Downwelling of these slab segments may induce small scale return flows in the mantle and contribute to exhumation of the ultra‐high pressure rocks and rift development. Significant low‐velocity anomalies are revealed beneath the rift zone and have consistently positive radial anisotropy, which indicates a dominant strain in the horizontal plane and supports a passive rifting model, where mantle material is brought to shallower depths simply as a result of the extension of the lithosphere and melt is produced due to the lowered melting point at reduced pressure (decompression melting). Tensional stresses transferred from slab pull of the northward Solomon subduction are probably driving the rifting.
    Description: Key Points: P wave radial anisotropic structure beneath the young and highly extended Woodlark rift is constrained from teleseismic tomography. Downwelling of slab relics bordering the rift zone may contribute to ultra‐high pressure rock exhumation and rift development. Slab‐pull drives rift initiation and induces decompression melting in the upper mantle under the rift zone by horizontal stress transfer.
    Description: National Natural Science Foundation of China (NSFC) http://dx.doi.org/10.13039/501100001809
    Description: National Science Foundation (NSF) http://dx.doi.org/10.13039/100000001
    Description: MEXT | Japan Society for the Promotion of Science (JSPS) http://dx.doi.org/10.13039/501100001691
    Description: Alexander von Humboldt‐Stiftung (Humboldt‐Stiftung) http://dx.doi.org/10.13039/100005156
    Description: https://doi.org/10.7914/SN/XD_1999
    Description: https://doi.org/10.7914/SN/ZN_2010
    Keywords: ddc:551 ; Woodlark rift ; radial anisotropy ; decompression melting ; slab‐pull ; slab downwelling ; ultra‐high pressure rock
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-01-17
    Description: The collision between the Indian and Eurasian plates promotes the southeastward extrusion of the Indochina Peninsula while the internal dynamics of its crustal deformation remain enigmatic. Here, we make use of seismic data from 38 stations and employ the ambient noise tomography to construct a 3‐D crustal shear‐wave velocity (Vs) model beneath the Indochina Peninsula. A low‐Vs anomaly is revealed in the mid‐lower crust of the Shan‐Thai Block and probably corresponds to the southern extension of the crustal flow from SE Tibet. Although the Khorat Plateau behaves as a rigid block, the observed low‐Vs anomalies in the lower crust and also below the Moho indicate that the crust may have been partially modified by mantle‐derived melts. The strike‐slip shearing motions of the Red River Fault may have dominantly developed crustal deformation at its western flank where a low‐Vs anomaly is observed at the upper‐middle crust.
    Description: Plain Language Summary: The Indochina Peninsula was believed to behave as a rigid block where significant southeastward extrusion and clockwise rotation have occurred in response to the collision between the Indian and Eurasian plates. Here, we employ ambient noise data to obtain the shear‐wave velocity (Vs) images and find deformations in the interior of the crust beneath the Indochina Peninsula. A low‐Vs anomaly is observed in the mid‐lower crust of the Shan‐Thai Block and represents the crustal flow from SE Tibet. The crust of the Khorat Plateau, the core of the Indochina Block, has been partially modified by mantle‐derived melts. The strike‐slip shearing motions of the Red River Fault have brought crustal deformation at its southwestern flank characterized as a low‐Vs anomaly in the upper‐middle crust.
    Description: Key Points: A 3‐D crustal shear‐wave velocity (Vs) model was constructed for the Indochina Peninsula from ambient noise tomography. Low‐Vs in the middle‐lower crust of the Shan‐Thai Block may represent the southern extension of the crustal flow from SE Tibet. The crust of the rigid Khorat Plateau has been partially modified by intrusion of mantle‐derived melts.
    Description: National Natural Science Foundation of China http://dx.doi.org/10.13039/501100001809
    Description: the State Key Laboratory of Marine Geology, Tongji University
    Description: Shanghai Sheshan National Geophysical Observatory
    Description: https://doi.org/10.5281/zenodo.5235658
    Keywords: ddc:551.1 ; Indochina Peninsula ; crustal structure ; lower‐crustal flow ; ambient noise tomography
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...