GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Materialart
Verlag/Herausgeber
Sprache
Erscheinungszeitraum
  • 1
    In: Biology, MDPI AG, Vol. 10, No. 11 ( 2021-11-15), p. 1183-
    Kurzfassung: Parkinson’s disease (PD) is a progressive neurodegenerative disorder which is characterized by the degeneration of dopaminergic neurons in substantia nigra (SN). Oxidative stress or reactive oxygen species (ROS) generation was suggested to play a role in this specific type of neurodegeneration. Therapeutic options which can target and counteract ROS generation may be of benefit. TSPO ligands are known to counteract with neuro-inflammation, ROS generation, apoptosis, and necrosis. In the current study, we investigated an in vitro cellular PD model by the assessment of 6-hydroxydopamine (6-OHDA, 80 µM)-induced PC12 neurotoxicity. Simultaneously to the exposure of the cells to 6-OHDA, we added the TSPO ligands CB86 and CB204 (25 µM each) and assessed the impact on several markers of cell death. The two ligands normalized significantly (57% and 52% respectively, from 44%; whereas the control was 68%) cell proliferation at different time points from 0–24 h. Additionally, we evaluated the effect of these two TSPO ligands on necrosis using propidium iodide (PI) staining and found that the ligands inhibited significantly the 6-OHDA-induced necrosis. As compared to control, the red count was increased up to 57-fold whereas CB86 and CB204 inhibited to 2.7-fold and 3.2-fold respectively. Necrosis was also analyzed by LDH assay which showed significant effect. Both assays demonstrated similar potent anti-necrotic effect of the two TSPO ligands. Reactive oxygen species (ROS) generation induced by 6-OHDA was also inhibited by the two TSPO ligand up to 1.3 and 1.5-fold respectively, as compared to 6-OHDA group. CB86 and CB204 inhibited also normalized the cell viability up to 1.8-fold after the exposure to 6-OHDA, as assessed by XTT assay. The two TSPO ligands also inhibited apoptosis significantly (1.3-fold for both) as assessed by apopxin green staining. In summary, it appears that the two TSPO ligands CB86 and CB204 can suppress cell death of PC12 induced by 6-OHDA. The results may be relevant to the use of these two TSPO ligands as therapeutic option neurodegenerative diseases like PD.
    Materialart: Online-Ressource
    ISSN: 2079-7737
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2021
    ZDB Id: 2661517-4
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    In: Journal of Fungi, MDPI AG, Vol. 8, No. 3 ( 2022-03-21), p. 321-
    Kurzfassung: Macrophages are some of the most important immune cells in the organism and are responsible for creating an inflammatory immune response in order to inhibit the passage of microscopic foreign bodies into the blood stream. Sometimes, their activation can be responsible for chronic inflammatory diseases such as asthma, tuberculosis, hepatitis, sinusitis, inflammatory bowel disease, and viral infections. Prolonged inflammation can damage the organs or may lead to death in serious conditions. In the present study, RAW264.7 macrophages were exposed to lipopolysaccharide (LPS; 20 ng/mL) and simultaneously treated with 20 µg/mL of natural-based formulation (NBF), mushroom–cannabidiol extract). Pro-inflammatory cytokines, chemokines, and other inflammatory markers were analyzed. The elevations in the presence of interleukin-6 (IL-6), cycloxygenase-2 (COX-2), C-C motif ligand-5 (CCL5), and nitrite response, following exposure to LPS, were completely inhibited by NBF administration. IL-1β and tumor necrosis factor alpha (TNF-α) release were inhibited by 3.9-fold and 1.5-fold, respectively. No toxic effect of NBF, as assessed by lactate dehydrogenase (LDH) release, was observed. Treatment of the cells with NBF significantly increased the mRNA levels of TLR2, and TLR4, but not NF-κB. Thus, it appears that the NBF possesses anti-inflammatory and immunomodulatory effects which can attenuate the release of pro-inflammatory markers. NBF may be a candidate for the treatment of acute and chronic inflammatory diseases and deserves further investigation.
    Materialart: Online-Ressource
    ISSN: 2309-608X
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2022
    ZDB Id: 2784229-0
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...