GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Keywords
Language
  • 1
    Keywords: Korallen ; Biologie ; Tierphysiologie ; Ökologie ; Korallen
    Type of Medium: Book
    Pages: IV, 41 S. , zahlr. Ill., graph. Darst., Kt.
    Series Statement: Smithsonian contributions to the marine sciences 40
    Language: English
    Note: Literaturverz. S. 39 - 41
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-02-27
    Description: PP53B-1204 Instrumental and proxy data and global climate model experiments indicate a multi-decadal shoaling of the western tropical Pacific (WTP) thermocline potentially related to a shift in ENSO frequency. In the WTP, the nutricline coincides with the thermocline, and a shoaling of the nutricline brings more nitrate-rich seawater higher in the water column and within the sunlit euphotic zone. In the nutrient-poor WTP, this incursion of nitrate-rich water at the bottom of the euphotic zone may stimulate productivity in the water column. However, there is a general paucity of measurements below the surface with which to investigate recent changes in seawater chemistry. Nitrogen isotope (δ15N) measurements of particulate organic matter (POM) can elucidate the source of nitrogen to the WTP and related trophic dynamics. This POM is the food source to the long-lived proteinaceous corals, and drives the nitrogen isotopic composition of their skeleton. Here, we report time series δ15N values from the banded skeletons of proteinaceous corals from offshore Palau in the WTP that provide proxy information about past changes in euphotic zone nitrogen dynamics. Bulk skeletal δ15N values declined between 1977 and 2010 suggesting a progressively increasing contribution of deep water with isotopically-light nitrate to the euphotic zone and/or a shortening of the planktonic food web. Since only some amino acids are enriched in δ15N with each trophic transfer in a food web, we measured the δ15N composition of seven individual amino acids in the same coral skeleton. The δ15N time series of the individual amino acids also declined over time, mirroring the bulk values. These new data indicate that the changes in the source nitrogen to the base of the euphotic zone drives a decline in coral skeletal δ15N values, consistent with the shoaling nutricline, with no coinciding alteration of the trophic structure in the WTP.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Biogeosciences, 116 (G1). G01032.
    Publication Date: 2018-02-06
    Description: Arctic Ocean freshening can exert a controlling influence on global climate, triggering strong feedbacks on ocean‐atmospheric processes and affecting the global cycling of the world’s oceans. Glacier‐fed ocean currents such as the Alaska Coastal Current are important sources of freshwater for the Bering Sea shelf, and may also influence the Arctic Ocean freshwater budget. Instrumental data indicate a multiyear freshening episode of the Alaska Coastal Current in the early 21st century. It is uncertain whether this freshening is part of natural multidecadal climate variability or a unique feature of anthropogenically induced warming. In order to answer this, a better understanding of past variations in the Alaska Coastal Current is needed. However, continuous long‐term high‐resolution observations of the Alaska Coastal Current have only been available for the last 2 decades. In this study, specimens of the long‐lived crustose coralline alga Clathromorphum nereostratum were collected within the pathway of the Alaska Coastal Current and utilized as archives of past temperature and salinity. Results indicate that coralline algal Mg/Ca ratios provide a 60 year record of sea surface temperatures and track changes of the Pacific Decadal Oscillation, a pattern of decadal‐to‐multidecadal ocean‐atmosphere climate variability centered over the North Pacific. Algal Ba/Ca ratios (used as indicators of coastal freshwater runoff) are inversely correlated to instrumentally measured Alaska Coastal Current salinity and record the period of freshening from 2001 to 2006. Similar multiyear freshening events are not evident in the earlier portion of the 60 year Ba/Ca record. This suggests that the 21st century freshening of the Alaska Coastal Current is a unique feature related to increasing glacial melt and precipitation on mainland Alaska.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-01-31
    Description: A solid understanding of global oceanic change throughout Holocene time is needed to contextualize and interpret recent observations of rapid warming (Moore, 2016), ocean acidification (Popova et al., 2014; Qi et al., 2017), increasing meltwater input (Halfar et al., 2013; Notz and Stroeve, 2016) and circulation changes (Liu et al., 2017; Rahmstorf et al., 2015; Yang et al., 2016) in the Arctic and subarctic Oceans. Precisely reconstructing acidification and temperature variations throughout the Holocene will provide a vital context for interpreting current environmental changes and future climate projections in the region. However, existing paleoenvironmental reconstructions are sparse and uncertain, largely owing to limited availability of high fidelity paleoceanographic archives, such as marine carbonates, in high latitude waters. Coralline algae of the genus Clathromorphum have emerged as key candidates for reconstructing high-latitude environmental variability at annual to sub-annual resolution. Here, we present the first empirical calibrations of boron isotope-pH and Mg/Li-temperature relationships within the long-lived, crustose coralline red alga Clathromorphum compactum. Calibration experiments were performed in triplicate, growing wild-collected specimens for four months at three controlled temperatures (6.4 – 12.4 oC) and four pCO2 conditions (352 - 3230 ppm), to test the effects of these environmental parameters on the isotopic and elemental composition of the algal skeleton. We find that boron isotopes within the skeleton of C. compactum (δ11Bcc) are well correlated with δ11B of seawater borate (δ11Βborate), defining the following equation: δ11Βcc (2σ) = 1.46 (0.06) δ11Βborate + 6.91 (0.72). This equation can be used to reconstruct δ11Βborate of the coralline alga’s ambient seawater, from which past seawater pH can be calculated. We also identified a strong correlation between skeletal Mg/Li ratio and seawater temperature, defined by the equation: Mg/Li (2σ) = 0.17 (0.02) temperature (oC) + 1.02 (0.16). Therefore, despite the strong biological control that this species appears to exert on calcification site pH (elevated 1.0-1.6 pH units above seawater pH, inferred from δ11Bcc 〉 δ11Βborate), and the apparent relationship between skeletal extension rate and skeletal Li/Ca and Mg/Ca, the δ11Bcc and Mg/Li ratios of the coralline alga’s skeleton strongly and significantly respond to ambient seawater pH and temperature, respectively. These results support the use of δ11B and Mg/Li within C. compactum for pH and temperature reconstructions of northern high-latitude oceans.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-03-14
    Keywords: Barium/Calcium ratio; Carbon dioxide, partial pressure; Growth rate per area; Identification; Linear extension; Lithium/Calcium ratio; Magnesium/Calcium ratio; Magnesium/Lithium ratio; pH; pH, standard deviation; Salinity; Species; Temperature, water; Temperature, water, standard deviation; δ11B, borate; δ11B, carbonate; δ11B, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 708 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-01-13
    Description: The geochemical measurements within the long-lived, crustose coralline red alga Clathromorphum compactum in calibration experiments, and the environmental conditions selected for the controlled laboratory aquaria.
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-09
    Description: Measured and calculated parameters of the experimental treatments in which C. compactum specimens were cultured in this study.
    Keywords: Alkalinity, total; Aragonite saturation state; Bicarbonate ion; Calculated using CO2SYS; Carbon, inorganic, dissolved; Carbonate ion; Carbon dioxide; Carbon dioxide, partial pressure; COND; Conductivity meter; Coulometric titration, Marianda, VINDTA 3C; DATE/TIME; Identification; pH; pH electrode (ISFET); Potentiometric titration, VINDTA (marianda); Salinity; Temperature, water; Thermometer
    Type: Dataset
    Format: text/tab-separated-values, 8904 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-03-15
    Description: Ocean acidification and warming are expected to disproportionately affect high-latitude calcifying species, such as crustose coralline algae. Clathromorphum nereostratum and Clathromorphum compactum are the primary builders of carbonate-hardgrounds in the Aleutians Islands of Alaska and North Atlantic shelf, respectively, providing habitat and settlement substrates for a large number of species. We exposed wild-collected specimens to 12 pCO2/T treatments (344–3322 μatm; 6.38–12.40°C) for 4 months in a factorially crossed, replicated laboratory experiment. Impacts of pCO2/T on algal calcification were quantified from linear extension and buoyant weight. Here we show that, despite belonging to the same genus, C. nereostratum exhibited greater sensitivity to thermal stress, while C. compactum exhibited greater sensitivity to pH stress. Furthermore, multivariate models of algal calcification derived from the experiment indicate that both C. nereostratum and C. compactum will commence net dissolution as early as 2120 and 2200 AD, respectively. Our results therefore indicate that near-term climate change may lead to substantial degradation of these species and loss of the critical hardground habitats that they form.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Benthos; Bicarbonate; Bicarbonate ion; Bicarbonate ion, standard deviation; Buoyant mass; Calcification/Dissolution; Calcification rate; Calcite saturation state; Calcite saturation state, standard deviation; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, partial pressure; Carbon dioxide, partial pressure, standard deviation; Carbon dioxide, standard deviation; Clathromorphum compactum; Clathromorphum nereostratum; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Coulometric titration; Date; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth; Growth/Morphology; Identification; Laboratory experiment; Macroalgae; North Atlantic; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Plantae; Potentiometric; Potentiometric titration; Rhodophyta; Salinity; Salinity, standard deviation; Sample ID; Single species; Species; Surface area; Temperate; Temperature; Temperature, water; Temperature, water, standard deviation; Time in days; Type
    Type: Dataset
    Format: text/tab-separated-values, 32400 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-03-15
    Description: Crustose coralline algae (CCA) function as foundation species by creating marine carbonate hardground habitats. High‐latitude species may be vulnerable to regional warming and acidification. Here, we report the results of an experiment investigating the impacts of CO2‐induced acidification (pCO2 350, 490, 890, 3200 µatm) and temperature (6.5, 8.5, 12.5°C) on the skeletal density of two species of high‐latitude CCA: Clathromorphum compactum (CC) and C. nereostratum (CN). Skeletal density of both species significantly declined with pCO2. In CN, the density of previously deposited skeleton declined in the highest pCO2 treatment. This species was also unable to precipitate new skeleton at 12.5°C, suggesting that CN will be particularly sensitive to future warming and acidification. The decline in skeletal density exhibited by both species under future pCO2 conditions could reduce their skeletal strength, potentially rendering them more vulnerable to disturbance, and impairing their production of critical habitat in high‐latitude systems.
    Keywords: Adak_Island_OA; Alkalinity, total; Aragonite saturation state; Benthos; Bicarbonate ion; Bicarbonate ion, standard error; Calcification/Dissolution; Calcite saturation state; Calcite saturation state, standard error; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate ion, standard error; Carbonate system computation flag; Carbon dioxide; Clathromorphum compactum; Clathromorphum nereostratum; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Coulometric titration; Density; Event label; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gulf_of_Maine_OA; Identification; Laboratory experiment; Location; Macroalgae; North Atlantic; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air), standard error; pH; pH, standard error; Plantae; Potentiometric; Potentiometric titration; Registration number of species; Rhodophyta; Salinity; Salinity, standard error; Single species; Species; Specimen number; Subsample ID; Temperate; Temperature; Temperature, water; Temperature, water, standard error; Treatment: partial pressure of carbon dioxide; Treatment: temperature; Type; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 24264 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-05-26
    Description: Dataset: Crustose coralline algae skeletal density
    Description: This dataset contains skeletal density for crustose coralline algae reared in natural and experimental conditions (factorially crossed temperature (~6.5, 8.5, and 12.5 °C) and pCO2 (~350, 490, 890, and 3200 µatm)). Skeletal density was quantified using a micro-CT scanner. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/836975
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1459827
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...