GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Materialart
Sprache
Erscheinungszeitraum
  • 1
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 15, No. 19 ( 2015-10-09), p. 11257-11272
    Kurzfassung: Abstract. Isoprene hydroxynitrates (IN) are tracers of the photochemical oxidation of isoprene in high NOx environments. Production and loss of IN have a significant influence on the NOx cycle and tropospheric O3 chemistry. To better understand IN chemistry, a series of photochemical reaction chamber experiments was conducted to determine the IN yield from isoprene photooxidation at high NO concentrations (〉 100 ppt). By combining experimental data and calculated isomer distributions, a total IN yield of 9(+4/−3) % was derived. The result was applied in a zero-dimensional model to simulate production and loss of ambient IN observed in a temperate forest atmosphere, during the Southern Oxidant and Aerosol Study (SOAS) field campaign, from 27 May to 11 July 2013. The 9 % yield was consistent with the observed IN/(MVK+MACR) ratios observed during SOAS. By comparing field observations with model simulations, we identified NO as the limiting factor for ambient IN production during SOAS, but vertical mixing at dawn might also contribute (~ 27 %) to IN dynamics. A close examination of isoprene's oxidation products indicates that its oxidation transitioned from a high-NO dominant chemical regime in the morning into a low-NO dominant regime in the afternoon. A significant amount of IN produced in the morning high NO regime could be oxidized in the low NO regime, and a possible reaction scheme was proposed.
    Materialart: Online-Ressource
    ISSN: 1680-7324
    Sprache: Englisch
    Verlag: Copernicus GmbH
    Publikationsdatum: 2015
    ZDB Id: 2092549-9
    ZDB Id: 2069847-1
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 125, No. 1 ( 2020-01-16)
    Kurzfassung: Free tropospheric hydroxyl and hydroperoxyl radical chemistry appears to be understood to within measurement and model uncertainty of ±40% Observed hydroxyl often exceeded modeled values in the upper troposphere, but measurement uncertainty masks any model chemistry errors A hydroxyl measurement interference found in forests for this instrument does not exist throughout the free troposphere, even near convection
    Materialart: Online-Ressource
    ISSN: 2169-897X , 2169-8996
    Sprache: Englisch
    Verlag: American Geophysical Union (AGU)
    Publikationsdatum: 2020
    ZDB Id: 710256-2
    ZDB Id: 2016800-7
    ZDB Id: 2969341-X
    SSG: 16,13
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 12, No. 3 ( 2012-02-09), p. 1527-1540
    Kurzfassung: Abstract. SCIAMACHY onboard ENVISAT (launched in 2002) enables the retrieval of global long-term column-averaged dry air mole fractions of the two most important anthropogenic greenhouse gases carbon dioxide and methane (denoted XCO2 and XCH4). In order to assess the quality of the greenhouse gas data obtained with the recently introduced v2 of the scientific retrieval algorithm WFM-DOAS, we present validations with ground-based Fourier Transform Spectrometer (FTS) measurements and comparisons with model results at eight Total Carbon Column Observing Network (TCCON) sites providing realistic error estimates of the satellite data. Such validation is a prerequisite to assess the suitability of data sets for their use in inverse modelling. It is shown that there are generally no significant differences between the carbon dioxide annual increases of SCIAMACHY and the assimilation system CarbonTracker (2.00 ± 0.16 ppm yr−1 compared to 1.94 ± 0.03 ppm yr−1 on global average). The XCO2 seasonal cycle amplitudes derived from SCIAMACHY are typically larger than those from TCCON which are in turn larger than those from CarbonTracker. The absolute values of the northern hemispheric TCCON seasonal cycle amplitudes are closer to SCIAMACHY than to CarbonTracker and the corresponding differences are not significant when compared with SCIAMACHY, whereas they can be significant for a subset of the analysed TCCON sites when compared with CarbonTracker. At Darwin we find discrepancies of the seasonal cycle derived from SCIAMACHY compared to the other data sets which can probably be ascribed to occurrences of undetected thin clouds. Based on the comparison with the reference data, we conclude that the carbon dioxide data set can be characterised by a regional relative precision (mean standard deviation of the differences) of about 2.2 ppm and a relative accuracy (standard deviation of the mean differences) of 1.1–1.2 ppm for monthly average composites within a radius of 500 km. For methane, prior to November 2005, the regional relative precision amounts to 12 ppb and the relative accuracy is about 3 ppb for monthly composite averages within the same radius. The loss of some spectral detector pixels results in a degradation of performance thereafter in the spectral range currently used for the methane column retrieval. This leads to larger scatter and lower XCH4 values are retrieved in the tropics for the subsequent time period degrading the relative accuracy. As a result, the overall relative precision is estimated to be 17 ppb and the relative accuracy is in the range of about 10–20 ppb for monthly averages within a radius of 500 km. The derived estimates show that the SCIAMACHY XCH4 data set before November 2005 is suitable for regional source/sink determination and regional-scale flux uncertainty reduction via inverse modelling worldwide. In addition, the XCO2 monthly data potentially provide valuable information in continental regions, where there is sparse sampling by surface flask measurements.
    Materialart: Online-Ressource
    ISSN: 1680-7324
    Sprache: Englisch
    Verlag: Copernicus GmbH
    Publikationsdatum: 2012
    ZDB Id: 2092549-9
    ZDB Id: 2069847-1
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 3, No. 5 ( 2010-10-06), p. 1351-1362
    Kurzfassung: Abstract. The Total Carbon Column Observing Network (TCCON) produces precise measurements of the column average dry-air mole fractions of CO2, CO, CH4, N2O and H2O at a variety of sites worldwide. These observations rely on spectroscopic parameters that are not known with sufficient accuracy to compute total columns that can be used in combination with in situ measurements. The TCCON must therefore be calibrated to World Meteorological Organization (WMO) in situ trace gas measurement scales. We present a calibration of TCCON data using WMO-scale instrumentation aboard aircraft that measured profiles over four TCCON stations during 2008 and 2009. These calibrations are compared with similar observations made in 2004 and 2006. The results indicate that a single, global calibration factor for each gas accurately captures the TCCON total column data within error.
    Materialart: Online-Ressource
    ISSN: 1867-8548
    Sprache: Englisch
    Verlag: Copernicus GmbH
    Publikationsdatum: 2010
    ZDB Id: 2505596-3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 10, No. 15 ( 2010-08-04), p. 7137-7159
    Kurzfassung: Abstract. One of the major objectives of the Megacities Initiative: Local And Global Research Observations (MILAGRO-2006) campaign was to investigate the long-range transport of polluted Mexico City Metropolitan Area (MCMA) outflow and determine its downwind impacts on air quality and climate. Six research aircraft, including the National Center for Atmospheric Research (NCAR) C-130, made extensive chemical, aerosol, and radiation measurements above MCMA and more than 1000 km downwind in order to characterize the evolution of the outflow as it aged and dispersed over the Mesa Alta, Sierra Madre Oriental, Coastal Plain, and Gulf of Mexico. As part of this effort, free-floating Controlled-Meteorological (CMET) balloons, commanded to change altitude via satellite, made repeated profile measurements of winds and state variables within the advecting outflow. In this paper, we present an analysis of the data from two CMET balloons that were launched near Mexico City on the afternoon of 18 March 2006 and floated downwind with the MCMA pollution for nearly 30 h. The repeating profile measurements show the evolving structure of the outflow in considerable detail: its stability and stratification, interaction with other air masses, mixing episodes, and dispersion into the regional background. Air parcel trajectories, computed directly from the balloon wind profiles, show three transport pathways on 18–19 March: (a) high-altitude advection of the top of the MCMA mixed layer, (b) mid-level outflow over the Sierra Madre Oriental followed by decoupling and isolated transport over the Gulf of Mexico, and (c) low-level outflow with entrainment into a cleaner northwesterly jet above the Coastal Plain. The C-130 aircraft intercepted the balloon-based trajectories three times on 19 March, once along each of these pathways; in all three cases, peaks in urban tracer concentrations and LIDAR backscatter are consistent with MCMA pollution. In comparison with the transport models used in the campaign, the balloon-based trajectories appear to shear the outflow far more uniformly and decouple it from the surface, thus forming a thin but expansive polluted layer over the Gulf of Mexico that is well aligned with the aircraft observations. These results provide critical context for the extensive aircraft measurements made during the 18–19 March MCMA outflow event and may have broader implications for modelling and understanding long-range transport.
    Materialart: Online-Ressource
    ISSN: 1680-7324
    Sprache: Englisch
    Verlag: Copernicus GmbH
    Publikationsdatum: 2010
    ZDB Id: 2092549-9
    ZDB Id: 2069847-1
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 6, No. 6 ( 2013-06-07), p. 1533-1547
    Kurzfassung: Abstract. The column-averaged dry-air mole fractions of carbon dioxide and methane (XCO2 and XCH4) have been retrieved from Greenhouse gases Observing SATellite (GOSAT) Short-Wavelength InfraRed (SWIR) observations and released as a SWIR L2 product from the National Institute for Environmental Studies (NIES). XCO2 and XCH4 retrieved using the version 01.xx retrieval algorithm showed large negative biases and standard deviations (−8.85 and 4.75 ppm for XCO2 and −20.4 and 18.9 ppb for XCH4, respectively) compared with data of the Total Carbon Column Observing Network (TCCON). Multiple reasons for these error characteristics (e.g., solar irradiance database, handling of aerosol scattering) are identified and corrected in a revised version of the retrieval algorithm (version 02.xx). The improved retrieval algorithm shows much smaller biases and standard deviations (−1.48 and 2.09 ppm for XCO2 and −5.9 and 12.6 ppb for XCH4, respectively) than the version 01.xx. Also, the number of post-screened measurements is increased, especially at northern mid- and high-latitudinal areas.
    Materialart: Online-Ressource
    ISSN: 1867-8548
    Sprache: Englisch
    Verlag: Copernicus GmbH
    Publikationsdatum: 2013
    ZDB Id: 2505596-3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 11, No. 23 ( 2011-12-09), p. 12317-12337
    Kurzfassung: Abstract. We describe a method of evaluating systematic errors in measurements of total column dry-air mole fractions of CO2 (XCO2) from space, and we illustrate the method by applying it to the v2.8 Atmospheric CO2 Observations from Space retrievals of the Greenhouse Gases Observing Satellite (ACOS-GOSAT) measurements over land. The approach exploits the lack of large gradients in XCO2 south of 25° S to identify large-scale offsets and other biases in the ACOS-GOSAT data with several retrieval parameters and errors in instrument calibration. We demonstrate the effectiveness of the method by comparing the ACOS-GOSAT data in the Northern Hemisphere with ground truth provided by the Total Carbon Column Observing Network (TCCON). We use the observed correlation between free-tropospheric potential temperature and XCO2 in the Northern Hemisphere to define a dynamically informed coincidence criterion between the ground-based TCCON measurements and the ACOS-GOSAT measurements. We illustrate that this approach provides larger sample sizes, hence giving a more robust comparison than one that simply uses time, latitude and longitude criteria. Our results show that the agreement with the TCCON data improves after accounting for the systematic errors, but that extrapolation to conditions found outside the region south of 25° S may be problematic (e.g., high airmasses, large surface pressure biases, M-gain, measurements made over ocean). A preliminary evaluation of the improved v2.9 ACOS-GOSAT data is also discussed.
    Materialart: Online-Ressource
    ISSN: 1680-7324
    Sprache: Englisch
    Verlag: Copernicus GmbH
    Publikationsdatum: 2011
    ZDB Id: 2092549-9
    ZDB Id: 2069847-1
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    In: Journal of Geophysical Research, American Geophysical Union (AGU), Vol. 116, No. D4 ( 2011-02-23)
    Materialart: Online-Ressource
    ISSN: 0148-0227
    Sprache: Englisch
    Verlag: American Geophysical Union (AGU)
    Publikationsdatum: 2011
    ZDB Id: 2033040-6
    ZDB Id: 3094104-0
    ZDB Id: 2130824-X
    ZDB Id: 2016813-5
    ZDB Id: 2016810-X
    ZDB Id: 2403298-0
    ZDB Id: 2016800-7
    ZDB Id: 161666-3
    ZDB Id: 161667-5
    ZDB Id: 2969341-X
    ZDB Id: 161665-1
    ZDB Id: 3094268-8
    ZDB Id: 710256-2
    ZDB Id: 2016804-4
    ZDB Id: 3094181-7
    ZDB Id: 3094219-6
    ZDB Id: 3094167-2
    ZDB Id: 2220777-6
    ZDB Id: 3094197-0
    SSG: 16,13
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 5, No. 6 ( 2012-06-19), p. 1387-1398
    Kurzfassung: Abstract. The TROPOspheric Monitoring Instrument (TROPOMI) will be part of ESA's Sentinel-5 Precursor (S5P) satellite platform scheduled for launch in 2015. TROPOMI will monitor methane and carbon monoxide concentrations in the Earth's atmosphere by measuring spectra of back-scattered sunlight in the short-wave infrared (SWIR). S5P will be the first satellite mission to rely uniquely on the spectral window at 4190–4340 cm−1 (2.3 μm) to retrieve CH4 and CO. In this study, we investigated if the absorption features of the three relevant molecules CH4, CO, and H2O are adequately known. To this end, we retrieved total columns of CH4, CO, and H2O from absorption spectra measured by two ground-based Fourier transform spectrometers that are part of the Total Carbon Column Observing Network (TCCON). The retrieval results from the 4190–4340 cm−1 range at the TROPOMI resolution (0.45 cm−1) were then compared to the CH4 results obtained from the 6000 cm−1 region, and the CO results obtained from the 4190–4340 cm−1 region at the higher TCCON resolution (0.02 cm−1). For TROPOMI-like settings, we were able to reproduce the CH4 columns to an accuracy of 0.3% apart from a constant bias of 1%. The CO retrieval accuracy was, through interference, systematically influenced by the shortcomings of the CH4 and H2O spectroscopy. In contrast to CH4, the CO column error also varied significantly with atmospheric H2O content. Unaddressed, this would introduce seasonal and latitudinal biases to the CO columns retrieved from TROPOMI measurements. We therefore recommend further effort from the spectroscopic community to be directed at the H2O and CH4 spectroscopy in the 4190–4340 cm−1 region.
    Materialart: Online-Ressource
    ISSN: 1867-8548
    Sprache: Englisch
    Verlag: Copernicus GmbH
    Publikationsdatum: 2012
    ZDB Id: 2505596-3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 15, No. 18 ( 2015-09-23), p. 10411-10433
    Kurzfassung: Abstract. We use an ensemble of surface (EPA CSN, IMPROVE, SEARCH, AERONET), aircraft (SEAC4RS), and satellite (MODIS, MISR) observations over the southeast US during the summer–fall of 2013 to better understand aerosol sources in the region and the relationship between surface particulate matter (PM) and aerosol optical depth (AOD). The GEOS-Chem global chemical transport model (CTM) with 25 × 25 km2 resolution over North America is used as a common platform to interpret measurements of different aerosol variables made at different times and locations. Sulfate and organic aerosol (OA) are the main contributors to surface PM2.5 (mass concentration of PM finer than 2.5 μm aerodynamic diameter) and AOD over the southeast US. OA is simulated successfully with a simple parameterization, assuming irreversible uptake of low-volatility products of hydrocarbon oxidation. Biogenic isoprene and monoterpenes account for 60 % of OA, anthropogenic sources for 30 %, and open fires for 10 %. 60 % of total aerosol mass is in the mixed layer below 1.5 km, 25 % in the cloud convective layer at 1.5–3 km, and 15 % in the free troposphere above 3 km. This vertical profile is well captured by GEOS-Chem, arguing against a high-altitude source of OA. The extent of sulfate neutralization (f = [NH4+]/(2[SO42−] + [NO3−]) is only 0.5–0.7 mol mol−1 in the observations, despite an excess of ammonia present, which could reflect suppression of ammonia uptake by OA. This would explain the long-term decline of ammonium aerosol in the southeast US, paralleling that of sulfate. The vertical profile of aerosol extinction over the southeast US follows closely that of aerosol mass. GEOS-Chem reproduces observed total column aerosol mass over the southeast US within 6 %, column aerosol extinction within 16 %, and space-based AOD within 8–28 % (consistently biased low). The large AOD decline observed from summer to winter is driven by sharp declines in both sulfate and OA from August to October. These declines are due to shutdowns in both biogenic emissions and UV-driven photochemistry. Surface PM2.5 shows far less summer-to-winter decrease than AOD and we attribute this in part to the offsetting effect of weaker boundary layer ventilation. The SEAC4RS aircraft data demonstrate that AODs measured from space are consistent with surface PM2.5. This implies that satellites can be used reliably to infer surface PM2.5 over monthly timescales if a good CTM representation of the aerosol vertical profile is available.
    Materialart: Online-Ressource
    ISSN: 1680-7324
    Sprache: Englisch
    Verlag: Copernicus GmbH
    Publikationsdatum: 2015
    ZDB Id: 2092549-9
    ZDB Id: 2069847-1
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...