GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 273 (1978), S. 636-640 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] A comparison of lithospheric plate distortion in Proterozoic times with that known to be now taking place in SE Asia shows a close similarity between neotectonic and Precambrian crustal behaviour. Precambrian high grade metamorphic terrains have evolved by crustal thickening processes similar to ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 351 (1991), S. 391-393 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] To characterize the fault population in a basin, we have assembled measurements of fault displacements at a wide range of scales: regional seismic data, oilfield seismic data and oilfield well cores. Figure la shows cumulative frequency plots of fault displacements on two regional profiles spanning ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Pure and applied geophysics 124 (1986), S. 365-373 
    ISSN: 1420-9136
    Keywords: Fault ; displacement ; seismic slip ; strain ; strain rate ; displacement rate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Maximum total displacement (D) is plotted against fault or thrust width(W) for 65 faults, thrusts, and groups of faults from a variety of geological environments. Displacements range from 0.4 m to 40 km and widths from 150 m to 630 km, and there is a near linear relationship betweenD andW 2. The required compatibility strains (e s) in rocks adjacent to these faults increases linearly withW and with $$\sqrt D $$ and ranges frome s=2×10−4 toe s=3×10−1. These are permanent ductile strains, which compare with values ofe s=2×10−5 for the elastic strains imposed during single slip earthquake events, which are characterised by a linear relationship between slip (u) andW. The data are consisten with a simple growth model for faults and thrusts, in which the slip in successive events increases by increments of constant size, and which predicts a relationship between displacement and width of the formD=cW 2. Incorporation of constant ductile strain rate into the model shows that the repreat time for slip events remains constant throughout the life of a fault, while the displacement rate increases with time. An internally consistent model withe s=2×10−5, giving repeat times of 160 years and instantaneous displacement rates of 0.02 cm/yr, 0.2 cm/yr, and 2.0 cm/yr when total displacement is 1 m, 100 m, and 10 km, and slip increasing by 0.5 mm with each event, gives a good approximation of the data. The model is also applicable to stable sliding, the slip rate varying with ductile strain rate and withW 2.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...