GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Earth sciences ; Earth Sciences ; Sedimentology ; Oceanography ; Natural disasters ; Geotechnical engineering ; Physical geography ; Earth sciences ; Sedimentology ; Oceanography ; Natural disasters ; Geotechnical engineering ; Physical geography ; Konferenzschrift 2015 ; Submarine Gleitung ; Meeresgeologie ; Submarine Gleitung ; Massenbewegung ; Meeresgeologie ; Meeresboden ; Suspensionsströmung ; Submarine Gleitung ; Turbidit
    Description / Table of Contents: 1. Submarine Mass Movements and Their Consequences: Progress and Challenges -- Part I Submarine Mass Movement in Margin Construction and Economic Significance2. The Role of Submarine Landslides in the Law of the Sea -- 3. Fabric Development and Pore-Throat Reduction in a Mass-Transport Deposit in the Jubilee Gas Field, Eastern Gulf of Mexico: Consequences for the Sealing Capacity of MTDs -- 4. Seismic geomorphology of the Israel Slump Complex in the central Levant Basin (SE Mediterranean) -- 5. Multiple Megaslide Complexes and their Significance for the Miocene stratigraphic evolution of the offshore Amazon Basin -- 6. Kinematics of submarine slope failures in the deepwater Taranaki Basin, New Zealand -- Part II Failure dynamics from landslide geomorphology -- 7. Postglacial Mass Failures in the Inner Hardangerfjorden System, Western Norway -- 8. Onshore and offshore geomorphological features of the El Golfo debris avalanche (El Hierro, Canary Islands) -- 9. New insights on failure and post-failure dynamics of submarine landslides on the intra-slope Palmarola ridge (Central Tyrrhenian Sea) -- 10. Assessment of Canyon Wall Failure Process from Multibeam Bathymetry and Remotely Operated Vehicle (ROV) Observations, U.S. Atlantic Continental Margin -- 11. The Chuí Megaslide Complex: regional-scale submarine landslides on the Southern Brazilian Margin -- 12. Submarine landslides and incised canyons of the southeast Queensland continental margin -- 13. Novel method to map the morphology of submarine landslide headwall scarps using Remotely Operated Vehicles -- 14. Flow behaviour of a giant landslide and debris flow entering Agadir Canyon, NW Africa -- 15. Fine-Scale Morphology of Tubeworm Slump, Monterey Canyon -- 16. Submarine slide topography and the Distribution of Vulnerable Marine Ecosystems: A Case Study in the Ionian Sea (Eastern Mediterranean) -- Part III Geotechnical aspects of mass movement -- 17. Shear Strength of Siliciclastic Sediments from Passive and Active Margins (0-100 meters below seafloor): Insights into Seismic Strengthening -- 18. A small volume calibration chamber for cone penetration testing (CPT) on submarine soils -- 19. Underwater Mass Movements in Lake Mjøsa, Norway -- 20. In situ cyclic softening of marine silts by vibratory CPTU at Orkdalsfjord test site, mid Norway -- 21. First results of the geotechnical in situ investigation for soil characterisation along the upper slope off Vesterålen - Northern Norway -- 22. A novel micro-shear tester for failure analysis of fine and cohesive granular matter -- 23. Knickpoint migration induced by landslide: Evidence from laboratory to field observations in Wabush Lake -- 24. Multiple flow slide experiment in the Westerschelde Estuary, The Netherlands -- Part IV Multidisciplinary case studies -- 25. Submarine mass wasting on Hovgaard Ridge, Fram Strait, European Arctic -- 26. 3D seismic investigations of Pleistocene Mass Transport Deposits and Glacigenic Debris Flows on the North Sea Fan, NE Atlantic Margin -- 27. Do embedded volcaniclastic layers serve as potential glide planes? – An integrated analysis from the Gela Basin offshore southern Sicily -- 28. Sediment failure affecting muddy contourites on the continental slope offshore northern Norway – lessons learned and some outstanding issues -- 29. Mass Wasting History within Lake Ohrid Basin (Albania/Macedonia) over the last 600ka -- 30. Implications of Sediment Dynamics in Mass Transport along the Pianosa Ridge (Northern Tyrrhenian Sea) -- 31. Late-Holocene Mass Movements in High Arctic East Lake, Melville Island (Western Canadian Arctic Archipelago) -- 32. Pleistocene Mass Transport Complexes off Barbados accretionary prism (Lesser Antilles) -- 33. Exploring the Influence of Deepwater Currents as Potential Triggers for Slope Instability -- Part V Tectonics and mass movements -- 34. French alpine foreland Holocene paleoseismicity revealed by coeval mass wasting deposits in glacial lakes -- 35. Spatial and temporal relation of submarine landslides and faults along the Israeli continental slope, eastern Mediterranean -- 36. Earthquake induced landslides in Lake Éternité, Québec, Canada -- 37. Large Mass Transport Deposits in Kumano Basin, Nankai Trough, Japan -- 38. Insights into Effectiveness of Simplified Seismic Displacement Procedures to Evaluate Earthquake Behavior of a Deepwater Slope -- Part VI Fluid flow and gas hydrates -- 39. Deriving the Rate of Salt Rise at the Cape Fear Slide Using New Seismic Data -- 40. Submarine slope instabilities coincident with shallow gas hydrate systems: insights from New Zealand examples -- 41. Eel Canyon Slump Scar and Associated Fluid Venting -- 42. Shallow gas and the development of a weak layer in submarine spreading, Hikurangi margin (New Zealand) -- 43. Stability of fine-grained sediments subject to gas hydrate dissociation in the Arctic continental margin -- Part VII Mass transport deposits in modern and outcrop sedimentology -- 44. Soft-sediment deformation associated with mass transport deposits of the aAnsa basin (Spanish Pyrenees) -- 45. Synsedimentary tectonics and mass wasting along the Alpine margin in Liassic time -- 46. Meso-scale kinematic indicators in exhumed mass transport deposits: definitions and implications -- 47. Morphodynamics of supercritical turbidity currents in the channel-lobe transition zone -- 48. Tiny fossils, big impact: the role of foraminifera-enriched condensed section in arresting the movement of a large retrogressive submarine landslide in the Gulf of Mexico -- 49. Inclusion of substrate blocks within a mass transport deposit: A case study from Cerro Bola, Argentina -- Part VIII Numerical and statistical analysis -- 50. GIS catalogue of submarine landslides in the Spanish Continental Shelf: potential and difficulties for susceptibility assessment -- 51. Tempo and triggering of large submarine landslides – Statistical analysis for hazard assessment -- 52. Morphological controls on submarine slab failures -- 53. Incorporating Correlated Variables into GIS-Based Probabilistic Submarine Slope Stability Assessments -- 54. Quantifying the key role of slope material peak strength – using Discrete Element simulations -- 55. Correction Factors for 1-D Runout Analyses of Selected Submarine Slides -- Part IX Tsunami generation from slope failure -- 56. Volcanic generation of tsunamis: Two New Zealand palaeo-events -- 57. Tsunami-genesis due to retrogressive landslides on an inclined seabed -- 58. Geothermal System as the Cause of the 1979 Landslide Tsunami in Lembata Island, Indonesia -- 59. Towards a spatial probabilistic submarine landslide hazard model for submarine canyons -- 60. Coupled modelling of the failure and tsunami of a submarine debris avalanche offshore central New Zealand -- 61. Observations of coastal landslide-generated tsunami under an ice cover: the case of Lac-des-Seize-Îles, Québec, Canada -- Index.
    Type of Medium: Online Resource
    Pages: Online-Ressource (XIII, 621 p. 256 illus., 219 illus. in color, online resource)
    Edition: 1st ed. 2016
    ISBN: 9783319209791
    Series Statement: Advances in Natural and Technological Hazards Research 41
    RVK:
    Language: English
    Note: 1. Submarine Mass Movements and Their Consequences: Progress and ChallengesPart  I Submarine Mass Movement in Margin Construction and Economic Significance2. The Role of Submarine Landslides in the Law of the Sea -- 3. Fabric Development and Pore-Throat Reduction in a Mass-Transport Deposit in the Jubilee Gas Field, Eastern Gulf of Mexico: Consequences for the Sealing Capacity of MTDs -- 4. Seismic geomorphology of the Israel Slump Complex in the central Levant Basin (SE Mediterranean) -- 5. Multiple Megaslide Complexes and their Significance for the Miocene stratigraphic evolution of the offshore Amazon Basin -- 6. Kinematics of submarine slope failures in the deepwater Taranaki Basin, New Zealand -- Part II Failure dynamics from landslide geomorphology -- 7. Postglacial Mass Failures in the Inner Hardangerfjorden System, Western Norway -- 8. Onshore and offshore geomorphological features of the El Golfo debris avalanche (El Hierro, Canary Islands) -- 9. New insights on failure and post-failure dynamics of submarine landslides on the intra-slope Palmarola ridge (Central Tyrrhenian Sea) -- 10. Assessment of Canyon Wall Failure Process from Multibeam Bathymetry and Remotely Operated Vehicle (ROV) Observations, U.S. Atlantic Continental Margin -- 11. The Chuí Megaslide Complex: regional-scale submarine landslides on the Southern Brazilian Margin -- 12. Submarine landslides and incised canyons of the southeast Queensland continental margin -- 13. Novel method to map the morphology of submarine landslide headwall scarps using Remotely Operated Vehicles -- 14. Flow behaviour of a giant landslide and debris flow entering Agadir Canyon, NW Africa -- 15. Fine-Scale Morphology of Tubeworm Slump, Monterey Canyon -- 16. Submarine slide topography and the Distribution of Vulnerable Marine Ecosystems: A Case Study in the Ionian Sea (Eastern Mediterranean) -- Part III Geotechnical aspects of mass movement -- 17. Shear Strength of Siliciclastic Sediments from Passive and Active Margins (0-100 meters below seafloor): Insights into Seismic Strengthening -- 18. A small volume calibration chamber for cone penetration testing (CPT) on submarine soils -- 19. Underwater Mass Movements in Lake Mjøsa, Norway -- 20. In situ cyclic softening of marine silts by vibratory CPTU at Orkdalsfjord test site, mid Norway -- 21. First results of the geotechnical in situ investigation for soil characterisation along the upper slope off Vesterålen - Northern Norway -- 22. A novel micro-shear tester for failure analysis of fine and cohesive granular matter -- 23. Knickpoint migration induced by landslide: Evidence from laboratory to field observations in Wabush Lake -- 24. Multiple flow slide experiment in the Westerschelde Estuary, The Netherlands -- Part IV Multidisciplinary case studies -- 25. Submarine mass wasting on Hovgaard Ridge, Fram Strait, European Arctic -- 26. 3D seismic investigations of Pleistocene Mass Transport Deposits and Glacigenic Debris Flows on the North Sea Fan, NE Atlantic Margin -- 27. Do embedded volcaniclastic layers serve as potential glide planes? - An integrated analysis from the Gela Basin offshore southern Sicily -- 28. Sediment failure affecting muddy contourites on the continental slope offshore northern Norway - lessons learned and some outstanding issues -- 29. Mass Wasting History within Lake Ohrid Basin (Albania/Macedonia) over the last 600ka -- 30. Implications of Sediment Dynamics in Mass Transport along the Pianosa Ridge (Northern Tyrrhenian Sea) -- 31. Late-Holocene Mass Movements in High Arctic East Lake, Melville Island (Western Canadian Arctic Archipelago) -- 32. Pleistocene Mass Transport Complexes off Barbados accretionary prism (Lesser Antilles) -- 33. Exploring the Influence of Deepwater Currents as Potential Triggers for Slope Instability -- Part V Tectonics and mass movements -- 34. French alpine foreland Holocene paleoseismicity revealed by coeval mass wasting deposits in glacial lakes -- 35. Spatial and temporal relation of submarine landslides and faults along the Israeli continental slope, eastern Mediterranean -- 36. Earthquake induced landslides in Lake Éternité, Québec, Canada -- 37. Large Mass Transport Deposits in Kumano Basin, Nankai Trough, Japan -- 38. Insights into Effectiveness of Simplified Seismic Displacement Procedures to Evaluate Earthquake Behavior of a Deepwater Slope -- Part VI Fluid flow and gas hydrates -- 39. Deriving the Rate of Salt Rise at the Cape Fear Slide Using New Seismic Data -- 40. Submarine slope instabilities coincident with shallow gas hydrate systems: insights from New Zealand examples -- 41. Eel Canyon Slump Scar and Associated Fluid Venting -- 42. Shallow gas and the development of a weak layer in submarine spreading, Hikurangi margin (New Zealand) -- 43. Stability of fine-grained sediments subject to gas hydrate dissociation in the Arctic continental margin -- Part VII Mass transport deposits in modern and outcrop sedimentology -- 44. Soft-sediment deformation associated with mass transport deposits of the aAnsa basin (Spanish Pyrenees) -- 45. Synsedimentary tectonics and mass wasting along the Alpine margin in Liassic time -- 46. Meso-scale kinematic indicators in exhumed mass transport deposits: definitions and implications -- 47. Morphodynamics of supercritical turbidity currents in the channel-lobe transition zone -- 48. Tiny fossils, big impact: the role of foraminifera-enriched condensed section in arresting the movement of a large retrogressive submarine landslide in the Gulf of Mexico -- 49. Inclusion of substrate blocks within a mass transport deposit: A case study from Cerro Bola, Argentina -- Part VIII Numerical and statistical analysis -- 50. GIS catalogue of submarine landslides in the Spanish Continental Shelf: potential and difficulties for susceptibility assessment -- 51. Tempo and triggering of large submarine landslides - Statistical analysis for hazard assessment -- 52. Morphological controls on submarine slab failures -- 53. Incorporating Correlated Variables into GIS-Based Probabilistic Submarine Slope Stability Assessments -- 54. Quantifying the key role of slope material peak strength - using Discrete Element simulations -- 55. Correction Factors for 1-D Runout Analyses of Selected Submarine Slides -- Part IX Tsunami generation from slope failure -- 56. Volcanic generation of tsunamis: Two New Zealand palaeo-events -- 57. Tsunami-genesis due to retrogressive landslides on an inclined seabed -- 58. Geothermal System as the Cause of the 1979 Landslide Tsunami in Lembata Island, Indonesia -- 59. Towards a spatial probabilistic submarine landslide hazard model for submarine canyons -- 60. Coupled modelling of the failure and tsunami of a submarine debris avalanche offshore central New Zealand -- 61. Observations of coastal landslide-generated tsunami under an ice cover: the case of Lac-des-Seize-Îles, Québec, Canada -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-20
    Description: This dataset includes multi-channel seismic reflection data from three surveys: https://doi.pangaea.de/10.1594/PANGAEA.925803. Post-stack time migrated seismic sections that were collected in 2018, during Research Voyage TAN1808 aboard RV Tangaroa. Multi-channel seismic reflection data from the APB13 survey, collected by Anadarko Petroleum Company, in 2013. We have re-processed data from Line APB13-25, and have displayed industry processing of Line APB13-32. Multi-channel seismic reflection data from Voyage SO214 aboard RV Sonne in 2011 This datasets also includes bathymetry data, seafloor backscatter data and water column backscatter data. These data were all collected in 2018 during Research Voyage TAN1808 aboard RV Tangaroa: https://doi.pangaea.de/10.1594/PANGAEA.925804 This dataset also includes gridded horizons generated from seismic interpretation: https://doi.pangaea.de/10.1594/PANGAEA.925896
    Keywords: capillary pressure; gas chimney; gas hydrate; Hikurangi Margin; hydraulic fracturing; mass transport deposit; seal
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-04-29
    Description: This dataset includes multi-channel seismic reflection data (post-stack time migrated seismic sections) that were collected in 2018, during Research Voyage TAN1808 aboard RV Tangaroa, east of New Zealand. These are the data we present in Figures 4,5,7 and 9 of Crutchley et al. (submitted for review to JGR Solid Earth, 2020). The voyage report describing data collection is located here: https://www.gns.cri.nz/Home/Our-Science/Energy-Futures/Gas-Hydrates/Recent-Expeditions/HYDEE-I-TAN1808/TAN-1808-report-2018 Multi-channel seismic reflection data from APB13 survey, collected by Anadarko Petroleum Company, in 2013. We have re-processed data from Line APB13-25, and have displayed industry processing of Line APB13-32. The data provided correspond to data shown in Figures 2,3 and 7 of Crutchley et al. (submitted for review to JGR Solid Earth, 2020). Multi-channel seismic reflection data from Voyage SO214 aboard RV Sonne in 2011. The voyage report is available here: http://dx.doi.org/10.3289/ifm-geomar_rep_47_2011 The data are displayed in Figure 9 of Crutchley et al. (submitted for review to JGR Solid Earth, 2020).
    Keywords: 61TG20180908; APB13_025; APB13_032; Binary Object; Binary Object (File Size); capillary pressure; Coordinate reference system; Event label; Figure; File content; gas chimney; gas hydrate; Hikurangi Margin; hydraulic fracturing; mass transport deposit; MCSEIS; Multichannel seismics; NEMESYS; seal; SO214/1; SO214/1_2D-SP1900-24288-part; Sonne; TAN1808; TAN1808-92; TAN1808-97; Tangaroa
    Type: Dataset
    Format: text/tab-separated-values, 28 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-05-11
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-03-20
    Description: Seismic survey of the silted bays of the Medione and Gorgo Cotone rivers. Evidence of the location of the harbour of the ancient city of Selinus, Sicily. The ruins of the ancient city of Selinus are located on the southern coast of Sicily on a limestone plateau bounded to the east and west by two respective silted bays or riverbeds. So far it has been impossible to archaeologically determine which of these bays served as a harbour in antiquity. In order to explore the depth structure of the silted bays, we performed two seismic surveys with shear waves, reaching penetration depths of approximately 25 m. The seismic measurements were calibrated by drillings. In th upper 15 m, the two bays differ strongly in seismic structure. The eastern bay (Gorgo Cotone valley) must be considered as a former lagoon that was connected to the sea. When the city of Selinus was founded, this lagoon was already silted at its shore, and it was banked up artificially for the construction of the eastern city quarter up to the city wall. The western bay (Modione valley) shows uniform fluvial sedimentation. A possibly artificial banking can also be found at the western foot of the city hill, dipping steeply (∼20°) from the city wall down to the Modione valley. The comparison of both locations shows that the eastern bay is a more plausible location of the harbour of Selinus, due to its protected lagoon and remains of construction.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-05-11
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-05-11
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-02-08
    Description: Although offshore freshened groundwater (OFG) systems have been documented in numerous continental margins worldwide, their geometry, controls and emplacement dynamics remain poorly constrained. Here we integrate controlled-source electromagnetic, seismic reflection and borehole data with hydrological modelling to quantitatively characterise a previously unknown OFG system near Canterbury, New Zealand. The OFG system consists of one main, and two smaller, low salinity groundwater bodies. The main body extends up to 60 km from the coast and a seawater depth of 110 m. We attribute along-shelf variability in salinity to permeability heterogeneity due to permeable conduits and normal faults, and to recharge from rivers during sea level lowstands. A meteoric origin of the OFG and active groundwater migration from onshore are inferred. However, modelling results suggest that the majority of the OFG was emplaced via topographically-driven flow during sea level lowstands in the last 300 ka. Global volumetric estimates of OFG will be significantly revised if active margins, with steep coastal topographies like the Canterbury margin, are considered.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-07
    Description: Shallow seabed depressions attributed to focused fluid seepage, known as pockmarks, have been documented in all continental margins. In this study we demonstrate how pockmark formation can be the result of a combination of multiple factors – fluid type, overpressures, seafloor sediment type, stratigraphy, and bottom currents. We integrate multibeam echosounder and seismic reflection data, sediment cores and pore water samples, with numerical models of groundwater and gas hydrates, from the Canterbury Margin (off New Zealand). More than 6800 surface pockmarks, reaching densities of 100 per km2, and an undefined number of buried pockmarks, are identified in the middle to outer shelf and lower continental slope. Fluid conduits across the shelf and slope include shallow to deep chimneys/pipes. Methane with a biogenic and/or thermogenic origin is the main fluid forming flow and escape features, although saline and freshened groundwaters may also be seeping across the slope. The main drivers of fluid flow and seepage are overpressure across the slope generated by sediment loading and thin sediment overburden above the overpressured interval in the outer shelf. Other processes (e.g. methane generation and flow, a reduction in hydrostatic pressure due to sea-level lowering) may also account for fluid flow and seepage features, particularly across the shelf. Pockmark occurrence coincides with muddy sediments at the seafloor, whereas their planform is elongated by bottom currents.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-03
    Description: Shallow seabed depressions attributed to focused fluid seepage, known as pock- marks, have been documented in all continental margins. In this study, we dem- onstrate how pockmark formation can be the result of a combination of multiple factors— fluid type, overpressures, seafloor sediment type, stratigraphy and bot- tom currents. We integrate multibeam echosounder and seismic reflection data, sediment cores and pore water samples, with numerical models of groundwa- ter and gas hydrates, from the Canterbury Margin (off New Zealand). More than 6800 surface pockmarks, reaching densities of 100 per km2, and an undefined number of buried pockmarks, are identified in the middle to outer shelf and lower continental slope. Fluid conduits across the shelf and slope include shal- low to deep chimneys/pipes. Methane with a biogenic and/or thermogenic origin is the main fluid forming flow and escape features, although saline and fresh- ened groundwaters may also be seeping across the slope. The main drivers of fluid flow and seepage are overpressure across the slope generated by sediment loading and thin sediment overburden above the overpressured interval in the outer shelf. Other processes (e.g. methane generation and flow, a reduction in hydrostatic pressure due to sea- level lowering) may also account for fluid flow and seepage features, particularly across the shelf. Pockmark occurrence coin- cides with muddy sediments at the seafloor, whereas their planform is elongated by bottom currents.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...