GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Morphological changes leading to aerial mycelium formation and sporulation in the mycelial bacterium Streptomyces coelicolor rely on establishing distinct patterns of gene expression in separate regions of the colony. σH was identified previously as one of three paralogous sigma factors associated with stress responses in S. coelicolor. Here, we show that sigH and the upstream gene prsH (encoding a putative antisigma factor of σH) form an operon transcribed from two developmentally regulated promoters, sigHp1 and sigHp2. While sigHp1 activity is confined to the early phase of growth, transcription of sigHp2 is dramatically induced at the time of aerial hyphae formation. Localization of sigHp2 activity using a transcriptional fusion to the green fluorescent protein reporter gene (sigHp2–egfp) showed that sigHp2 transcription is spatially restricted to sporulating aerial hyphae in wild-type S. coelicolor. However, analysis of mutants unable to form aerial hyphae (bld mutants) showed that sigHp2 transcription and σH protein levels are dramatically upregulated in a bldD mutant, and that the sigHp2–egfp fusion was expressed ectopically in the substrate mycelium in the bldD background. Finally, a protein possessing sigHp2 promoter-binding activity was purified to homogeneity from crude mycelial extracts of S. coelicolor and shown to be BldD. The BldD binding site in the sigHp2 promoter was defined by DNase I footprinting. These data show that expression of σH is subject to temporal and spatial regulation during colony development, that this tissue-specific regulation is mediated directly by the developmental transcription factor BldD and suggest that stress and developmental programmes may be intimately connected in Streptomyces morphogenesis.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 55 (2005), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Caulobacter crescentus assembles many of its cellular machines at distinct times and locations during the cell cycle. PodJ provides the spatial cues for the biogenesis of several polar organelles, including the pili, adhesive holdfast and chemotactic apparatus, by recruiting structural and regulatory proteins, such as CpaE and PleC, to a specific cell pole. PodJ is a protein with a single transmembrane domain that exists in two forms, full-length (PodJL) and truncated (PodJS), each appearing during a specific time period of the cell cycle to control different aspects of polar organelle development. PodJL is synthesized in the early predivisional cell and is later proteolytically converted to PodJS. During the swarmer-to-stalked transition, PodJS must be degraded to preserve asymmetry in the next cell cycle. We found that MmpA facilitates the degradation of PodJS. MmpA belongs to the site-2 protease (S2P) family of membrane-embedded zinc metalloproteases, which includes SpoIVFB and YluC of Bacillus subtilis and YaeL of Escherichia coli. MmpA appears to cleave within or near the transmembrane segment of PodJS, releasing it into the cytoplasm for complete proteolysis. While PodJS has a specific temporal and spatial address, MmpA is present throughout the cell cycle; furthermore, periplasmic fusion to mRFP1 suggested that MmpA is uniformly distributed around the cell. We also determined that mmpA and yaeL can complement each other in C. crescentus and E. coli, indicating functional conservation. Thus, the sequential degradation of PodJ appears to involve regulated intramembrane proteolysis (Rip) by MmpA.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Whereas in Bacillus subtilis, a general stress response stimulon under the control of a single sigma factor (SigB) is induced by different physiological and environmental stresses (heat, salt or ethanol shock), in Streptomyces coelicolor, these environmental stresses induce independent sets of proteins, and its genome encodes nine SigB paralogues. To investigate possible functions of multiple sigB-like genes in S. coelicolor, Pctc, a promoter routinely used to assay SigB activity in vivo, was analysed as a heterologous reporter. The fact that Pctc was activated by osmotic shock, but not by heat or ethanol, confirmed that stress response system(s) could operate independently in S. coelicolor. Pctc was also induced transiently during growth of liquid cultures, presumably by nutritional signals. We purified an RNA polymerase holoenzyme from crude extracts that catalysed specific transcription of Pctc in vitro. Its sigma subunit was identified as a product of the sigH gene, which is co-transcribed downstream of a putative antisigma factor gene (prsH). Although the sigH function was not needed for normal colony morphology, prsH was conditionally required for both aerial hyphae formation and regulation of antibiotic biosynthesis. Levels of two different sigH-encoded proteins were growth phase dependent but not significantly changed by osmotic stress, implying the important roles of post-translational regulatory elements such as PrsH. In addition, synthesis of three other SigH-like proteins was induced by osmotic stress, but not by ethanol or heat. Two of them were genetically assigned to sigH homologous loci sigI and sigJ and shown to be independently regulated. This family of SigH-like proteins displayed different osmotic response kinetics. Thus, in contrast to many other bacteria, S. coelicolor uses an osmotic sensory system that can co-ordinate the activity of multiple paralogues to control the relative activity of promoters within the same stress stimulon. Such specialized stress response systems may reflect adaptive functions needed for colonial differentiation.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 49 (2003), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Two distinct protein complexes, the flagellum and the pilus biogenesis machinery, are asymmetrically assembled at one pole of the Caulobacter predivisional cell. Cell division yields dissimilar daughter cells: a stalked cell and a swarmer cell that assembles several pili at the flagellated cell pole. Strains bearing mutations in the pleA gene are pililess and non-flagellated. The PleA protein contains a region that is similar to a peptidoglycan-hydrolytic active site, and a point mutation at this site in PleA results in the loss of flagellum and pili biogenesis. PleA was found to be required for the insertion of the outer membrane pilus secretion channel at the cell pole and for the accumulation of the PilA pilin subunit. PleA is also required for the assembly of substructures of the flagellar basal body hook complex that are located in or traverse the peptidoglycan layer. These results argue that PleA facilitates the assembly of envelope-spanning structures at the cell pole. In support of this, PleA was found to be present only during a short interval in the cell cycle that coincides with the assembly of the flagellum and the pilus secretion apparatus.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: In the multicellular bacterium Streptomyces coelicolor, functions of developmental (bald) genes are required for the biosynthesis of SapB, a hydrophobic peptidic morphogen that facilitates aerial hyphae formation. Here, we show that aerial hyphal growth and SapB biosynthesis could be activated independently from the normal developmental cascade by providing unprogrammed expression of functionally interactive genes within the ram cluster. ramC, ramS and ramR were essential for normal growth of aerial hyphae, and ramR, a response regulator gene, was a key activator of development. The ramR gene restored growth of aerial hyphae and SapB formation in all bald strains tested (albeit only weakly in the bldC mutant), many of which are characterized by physiological defects. Disruption of the ramR gene abolished SapB biosynthesis and severely delayed growth of aerial hyphae. Transcription of ramR was developmentally controlled, and RamR function in vivo depended on its putative phosphorylation site (D53). We identified and mapped RamR targets immediately upstream of the region encoding ramC and ramS, a putative operon. Overexpression of ramR in the wild-type strain increased SapB levels and caused a distinctive wrinkled surface topology. Based on these results, we propose that phenotypes of bald mutations reflect an early stage in the Streptomyces developmental programme similar to the spo0 mutations in the unicellular bacterium Bacillus subtilis, and that RamR has analogies to Spo0A, the Bacillus response regulator that integrates physiological signals before triggering endospore formation.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...