GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    Publication Date: 2015-12-01
    Description: A gigantic light experiment is taking place in the Arctic. Climate change has led to substantial reductions in sea ice extent and thickness in the Arctic Ocean. Sea ice, particularly when snow covered, acts as a lid hindering light to reach the waters underneath. Less ice will therefore mean more light entering the water column, with profound effects on pelagic and benthic ecosystems. Responses through primary production are so far well acknowledged. Here we argue that there is a need to broaden the view to include light-driven effects on fish, as they depend on light to locate prey. We used the Norwegian Earth System Model estimates of past and future sea ice area and thickness in the Arctic and applied attenuation coefficients for ice and snow to estimate light intensity. The results show a dramatic increase in the amount of light predicted to reach the future Arctic Ocean. We combined this insight with mechanistic understanding of how light modulates visual prey-detection and predict that fish will forage more efficiently as sea ice diminishes and that their populations will expand to higher latitudes, at least seasonally. Poleward shifts of boreal fish species have been predicted by many and to some extent observed, but a changing light environment has so far not been considered a driver. Expanding distributions and greater visual predation may restructure ecological relationships throughout the Arctic foodweb and lead to regime shifts. Research efforts should focus on the dynamics of how less sea ice will affect the feeding ecology and habitat usage of fish, particularly the northern limits of distributions. Mechanistic approaches to these topics offer insights beyond statistical correlations and extrapolations, and will help us understand how changing biophysical dynamics in the Arctic influence complex processes including production, predator–prey interactions, trait-evolution, and fisheries.
    Print ISSN: 1054-3139
    Electronic ISSN: 1095-9289
    Topics: Biology , Geosciences , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...