GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Material
Language
Subjects(RVK)
  • 1
    In: Annals of the New York Academy of Sciences, Wiley, Vol. 1146, No. 1 ( 2008-12), p. 212-234
    Abstract: An analysis of the frequency of cyclones and surface wind velocity for the Euro–Atlantic sector is performed by means of an objective methodology. Monthly and seasonal trends of cyclones and wind speed magnitude are computed and trends between 1960 and 2000 evaluated. Results reveal a significant frequency decrease (increase) in the western Mediterranean (Greenland and Scandinavia), particularly in December, February, and March. Seasonal and monthly analysis of wind magnitude trends shows similar spatial patterns. We show that these changes in the frequency of low‐pressure centers and the associated wind patterns are partially responsible for trends in the significant height of waves. Throughout the extended winter months (October–March), regions with positive (negative) wind magnitude trends, of up to 5 cm/s/year, often correspond to regions of positive (negative) significant wave height trends. The cyclone and wind speed trends computed for January–March are well matched by the corresponding trends in significant wave height, with February being the month with the highest trends (negative south of lat 50°N up to −3 cm/year, and positive up to 5 cm/year just north of Scotland). Trends in European precipitation are assessed using the Climatic Research Unit data set. The results of the assessment emphasize the link with the corresponding tendencies of cyclone frequencies. Finally, it is shown that these changes are associated, to a large extent, with the preferred phases of major large‐scale atmospheric circulation modes, particularly with the North Atlantic Oscillation, the eastern Atlantic pattern, and the Scandinavian pattern.
    Type of Medium: Online Resource
    ISSN: 0077-8923 , 1749-6632
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2008
    detail.hit.zdb_id: 2834079-6
    detail.hit.zdb_id: 211003-9
    detail.hit.zdb_id: 2071584-5
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 2007
    In:  Journal of Hydrometeorology Vol. 8, No. 3 ( 2007-06-01), p. 483-498
    In: Journal of Hydrometeorology, American Meteorological Society, Vol. 8, No. 3 ( 2007-06-01), p. 483-498
    Abstract: The 2004/05 hydrological year (October 2004 to September 2005) was characterized by intense dry conditions affecting most of western Europe (35°–55°N and 10°W–10°E). In Iberia the drought affected every month of this period, with the southern half of Iberia receiving roughly 40% of the usual precipitation by June 2005. Moreover, this episode stands as the driest event in the last 140 yr, producing major socioeconomic impacts particularly due to the large decrease in hydroelectricity and agricultural production in both Iberian countries (Portugal and Spain). To assess the atmospheric submonthly circulation associated with this drought an Eulerian [weather types (WTs)] and a Lagrangean (objective storm tracks) analysis were combined. There was a dramatic drop in “wet” WT frequency during winter, with less than 50% of the normal value, and a corresponding increase of “dry” WTs. The storm-track analysis revea ls an impressive northward displacement of cyclone trajectories in the North Atlantic sector in winter months, resulting in an almost complete absence of cyclones crossing Iberia and western Europe. At the monthly scale, the intense drought in Iberia was due to a combination of different physical mechanisms. First, the scarce precipitation observed between November 2004 and January 2005 was associated with positive North Atlantic Oscillation (NAO) indexes for these months. In February, the East Atlantic (EA) pattern seems to be the main driver. In March neither the negative NAO (−1.8) nor the positive EA (1.1) are capable of explaining the large negative precipitation anomalies. However, it is shown that during March 2005, an intense and anomalous blocking was displaced southward of its usual location, inhibiting the occurrence of precipitation over Iberia and leading to a negative NAO index anomalously associated with low precipitation records.
    Type of Medium: Online Resource
    ISSN: 1525-7541 , 1525-755X
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2007
    detail.hit.zdb_id: 2042176-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2006
    In:  Journal of Hydrometeorology Vol. 7, No. 1 ( 2006-02-01), p. 101-113
    In: Journal of Hydrometeorology, American Meteorological Society, Vol. 7, No. 1 ( 2006-02-01), p. 101-113
    Abstract: March monthly accumulated precipitation in the central and western regions of the Iberian Peninsula presents a clear continuous decline of 50% during the 1960–97 period. A finer analysis using daily data reveals that this trend is exactly confined to the month of March. However, this is merely the most visible aspect of a larger phenomenon over the North Atlantic/European sector. The European precipitation trends in March for the period 1960–2000 show a clear distribution of increasing precipitation in the northern regions (the British Isles and parts of Scandinavia) together with decreasing trends throughout the western Mediterranean Basin. Relevant circulation changes over the North Atlantic and European sectors explain these precipitation trends. First, a regional Eulerian approach by means of a weather-type (WT) classification shows that the major rainfall contributors in March display significantly decreasing frequencies for the Iberian Peninsula, in contrast to the corresponding “wet” weather types for the U.K./Ireland sector, which display increasing frequencies. Within a larger context, a Lagrangian approach, based on the analysis of storm tracks over Europe and the North Atlantic region, reveals dramatic changes in the location of cyclones in the last four decades that coincide with the corresponding precipitation trends in Europe. The North Atlantic Oscillation is suggested to be the most important large-scale factor controlling both the circulation changes and the precipitation trends over the Euro–Atlantic area in March. Finally, the potential impact of reduced precipitation for rivers and water resources in the Iberian Peninsula is considered.
    Type of Medium: Online Resource
    ISSN: 1525-7541 , 1525-755X
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2006
    detail.hit.zdb_id: 2042176-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    IOP Publishing ; 2020
    In:  Environmental Research Letters Vol. 15, No. 9 ( 2020-09-01), p. 0940b7-
    In: Environmental Research Letters, IOP Publishing, Vol. 15, No. 9 ( 2020-09-01), p. 0940b7-
    Abstract: The Fire Weather Index (FWI) is widely used to assess the meteorological fire danger in several ecosystems worldwide. One shortcoming of the FWI is that only surface weather conditions are considered, despite the important role often played by atmospheric instability in the development of very large wildfires. In this work, we focus on the Iberian Peninsula for the period spanning 2004–2018. We show that atmospheric instability, assessed by the Continuous Haines Index (CHI), can be used to improve estimates of the probability of exceedance of energy released by fires. To achieve this, we consider a Generalized Pareto (GP) model and we show that by stepwisely introducing the FWI and then the CHI as covariates of the GP parameters, the model is improved at each stage. A comprehensive comparison of results using the GP with the FWI as a covariate and the GP with both the FWI and CHI as covariates allowed us to then define a correction to the FWI, dependent on the CHI, that we coined enhanced FWI (FWIe). Besides ensuring a better performance of this improved FWI version, it is important to stress that the proposed FWIe incorporates efficiently the effect of atmospheric instability into an estimation of fire weather danger and can be easily incorporated into existing systems.
    Type of Medium: Online Resource
    ISSN: 1748-9326
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2020
    detail.hit.zdb_id: 2255379-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Tellus A: Dynamic Meteorology and Oceanography, Stockholm University Press, Vol. 68, No. 1 ( 2016-12-01), p. 29391-
    Type of Medium: Online Resource
    ISSN: 1600-0870
    Language: Unknown
    Publisher: Stockholm University Press
    Publication Date: 2016
    detail.hit.zdb_id: 2026987-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Copernicus GmbH ; 2018
    In:  Natural Hazards and Earth System Sciences Vol. 18, No. 2 ( 2018-02-19), p. 515-529
    In: Natural Hazards and Earth System Sciences, Copernicus GmbH, Vol. 18, No. 2 ( 2018-02-19), p. 515-529
    Abstract: Abstract. We present a procedure that allows the operational generation of daily forecasts of fire danger over Mediterranean Europe. The procedure combines historical information about radiative energy released by fire events with daily meteorological forecasts, as provided by the Satellite Application Facility for Land Surface Analysis (LSA SAF) and the European Centre for Medium-Range Weather Forecasts (ECMWF). Fire danger is estimated based on daily probabilities of exceedance of daily energy released by fires occurring at the pixel level. Daily probability considers meteorological factors by means of the Canadian Fire Weather Index (FWI) and is estimated using a daily model based on a generalized Pareto distribution. Five classes of fire danger are then associated with daily probability estimated by the daily model. The model is calibrated using 13 years of data (2004–2016) and validated against the period of January–September 2017. Results obtained show that about 72 % of events releasing daily energy above 10 000 GJ belong to the “extreme” class of fire danger, a considerably high fraction that is more than 1.5 times the values obtained when using the currently operational Fire Danger Forecast module of the European Forest Fire Information System (EFFIS) or the Fire Risk Map (FRM) product disseminated by the LSA SAF. Besides assisting in wildfire management, the procedure is expected to help in decision making on prescribed burning within the framework of agricultural and forest management practices.
    Type of Medium: Online Resource
    ISSN: 1684-9981
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2018
    detail.hit.zdb_id: 2069216-X
    detail.hit.zdb_id: 2064587-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    MDPI AG ; 2021
    In:  Remote Sensing Vol. 13, No. 9 ( 2021-04-21), p. 1608-
    In: Remote Sensing, MDPI AG, Vol. 13, No. 9 ( 2021-04-21), p. 1608-
    Abstract: Mapping burned areas using satellite imagery has become a subject of extensive research over the past decades. The availability of high-resolution satellite data allows burned area maps to be produced with great detail. However, their increasing spatial resolution is usually not matched by a similar increase in the temporal domain. Moreover, high-resolution data can be a computational challenge. Existing methods usually require downloading and processing massive volumes of data in order to produce the resulting maps. In this work we propose a method to make this procedure fast and yet accurate by leveraging the use of a coarse resolution burned area product, the computation capabilities of Google Earth Engine to pre-process and download Sentinel-2 10-m resolution data, and a deep learning model trained to map the multispectral satellite data into the burned area maps. For a 1500 ha fire our method can generate a 10-m resolution map in about 5 min, using a computer with an 8-core processor and 8 GB of RAM. An analysis of six important case studies located in Portugal, southern France and Greece shows the detailed computation time for each process and how the resulting maps compare to the input satellite data as well as to independent reference maps produced by Copernicus Emergency Management System. We also analyze the feature importance of each input band to the final burned area map, giving further insight about the differences among these events.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Elsevier BV ; 2020
    In:  ISPRS Journal of Photogrammetry and Remote Sensing Vol. 160 ( 2020-02), p. 260-274
    In: ISPRS Journal of Photogrammetry and Remote Sensing, Elsevier BV, Vol. 160 ( 2020-02), p. 260-274
    Type of Medium: Online Resource
    ISSN: 0924-2716
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2020
    detail.hit.zdb_id: 2012663-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 104, No. 8 ( 2023-08), p. E1493-E1506
    Abstract: In 1639, the German naturalist Georg Marcgraf established the first astronomical observatory in the Americas, located in Recife (Brazil). There, he made the first daily systematic meteorological observations of wind direction, precipitation, fog, and thunder and lightning from 1640 to 1642. We outline the circumstances that led to this observatory being established and analyze the observations. The range of values obtained from all the variables recorded by Marcgraf corresponds well with Recife’s current climate. However, wetter-than-normal conditions were recorded during 1640, while anomalous concentrations of foggy days occurred from May to December 1641. We hypothesize that these anomalous record foggy days could be associated with the highly explosive eruptions of the Komagatake and Parker volcanoes, both in 1640.
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2023
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Journal of Climate, American Meteorological Society, Vol. 33, No. 1 ( 2020-01-01), p. 263-279
    Abstract: Moisture transport over the northeastern Atlantic Ocean is an important process governing precipitation distribution and variability over western Europe. To assess its long-term variability, the vertically integrated horizontal water vapor transport (IVT) from a long-term climate simulation spanning the period 850–2100 CE was used. Results show a steady increase in moisture transport toward western Europe since the late-nineteenth century that is projected to expand during the twenty-first century under the RCP8.5 scenario. The projected IVT for 2070–99 significantly exceeds the range given by interannual–interdecadal variability of the last millennium. Changes in IVT are in line with significant increases in tropospheric moisture content, driven by the concurrent rise in surface temperatures associated with the anthropogenic climate trend. On regional scales, recent and projected precipitation changes over the British Isles follow the global positive IVT trend, whereas a robust precipitation decrease over Iberia is identified in the twenty-first century, particularly during autumn. This indicates a possible extension of stable and dry summer conditions and a decoupling between moisture availability and dynamical forcing. The investigation of circulation features reveals a mean poleward shift of moisture corridors and associated atmospheric rivers. In particular, in Iberia, a significant increase in the frequency of dry weather types is observed, accompanied by a decrease in the frequency of wet types. An opposite response is observed over the British Isles. These changes imply a stronger meridional north–south dipole in terms of pressure and precipitation distributions, enhancing the transport toward central Europe rather than to Iberia.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2020
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...