GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Copernicus GmbH ; 2016
    In:  Hydrology and Earth System Sciences Vol. 20, No. 10 ( 2016-10-07), p. 4043-4059
    In: Hydrology and Earth System Sciences, Copernicus GmbH, Vol. 20, No. 10 ( 2016-10-07), p. 4043-4059
    Abstract: Abstract. Climate classification systems, such as Köppen–Geiger and the aridity index, are used in large-scale drought studies to stratify regions with similar hydro-climatic drought properties. What is currently lacking is a large-scale evaluation of the relation between climate and observed streamflow drought characteristics. In this study we explored how suitable common climate classifications are for differentiating catchments according to their characteristic hydrologic drought duration and whether drought durations within the same climate classes are comparable between different regions. This study uses a dataset of 808 near-natural streamflow records from Europe and the USA to answer these questions. First, we grouped drought duration distributions of each record over different classes of four climate classification systems and five individual climate and catchment controls. Then, we compared these drought duration distributions of all classes within each climate classification system or classification based on individual controls. Results showed that climate classification systems that include absolute precipitation in their classification scheme (e.g., the aridity index) are most suitable for differentiating catchments according to drought duration. However, differences in duration distributions were found for the same climate classes in Europe and the USA. These differences are likely caused by differences in precipitation, in catchment controls as expressed by the base flow index and in differences in climate beyond the total water balance (e.g., seasonality in precipitation), which have been shown to exert a control on drought duration as well. Climate classification systems that include an absolute precipitation control can be tailored to drought monitoring and early warning systems for Europe and the USA to define regions with different sensitivities to hydrologic droughts, which, for example, have been found to be higher in catchments with a low aridity index. However, stratification of catchments according to these climate classification systems is likely to be complemented with information of other climate classification systems (Köppen–Geiger) and individual climate and catchment controls (precipitation and the base flow index), especially in a comparative study between Europe and the USA.
    Type of Medium: Online Resource
    ISSN: 1607-7938
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2016
    detail.hit.zdb_id: 2100610-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Environmental Research Letters, IOP Publishing, Vol. 17, No. 4 ( 2022-04-01), p. 044059-
    Abstract: Human activities both aggravate and alleviate streamflow drought. Here we show that aggravation is dominant in contrasting cases around the world analysed with a consistent methodology. Our 28 cases included different combinations of human-water interactions. We found that water abstraction aggravated all drought characteristics, with increases of 20%–305% in total time in drought found across the case studies, and increases in total deficit of up to almost 3000%. Water transfers reduced drought time and deficit by up to 97%. In cases with both abstraction and water transfers into the catchment or augmenting streamflow from groundwater, the water inputs could not compensate for the aggravation of droughts due to abstraction and only shift the effects in space or time. Reservoir releases for downstream water use alleviated droughts in the dry season, but also led to deficits in the wet season by changing flow seasonality. This led to minor changes in average drought duration (−26 to +38%) and moderate changes in average drought deficit (−86 to +369%). Land use showed a smaller impact on streamflow drought, also with both increases and decreases observed (−48 to +98%). Sewage return flows and pipe leakage possibly counteracted the effects of increased imperviousness in urban areas; however, untangling the effects of land use change on streamflow drought is challenging. This synthesis of diverse global cases highlights the complexity of the human influence on streamflow drought and the added value of empirical comparative studies. Results indicate both intended and unintended consequences of water management and infrastructure on downstream society and ecosystems.
    Type of Medium: Online Resource
    ISSN: 1748-9326
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2022
    detail.hit.zdb_id: 2255379-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Copernicus GmbH ; 2022
    In:  Natural Hazards and Earth System Sciences Vol. 22, No. 6 ( 2022-06-23), p. 2099-2116
    In: Natural Hazards and Earth System Sciences, Copernicus GmbH, Vol. 22, No. 6 ( 2022-06-23), p. 2099-2116
    Abstract: Abstract. Droughts often have a severe impact on the environment, society, and the economy. The variables and scales that are relevant to understand the impact of drought motivated this study, which compared hazard and propagation characteristics, as well as impacts, of major droughts between 1990 and 2019 in southwestern Germany. We bring together high-resolution datasets of air temperature, precipitation, soil moisture simulations, and streamflow and groundwater level observations, as well as text-based information on drought impacts. Various drought characteristics were derived from the hydrometeorological and drought impact time series and compared across variables and spatial scales. Results revealed different drought types sharing similar hazard and impact characteristics. The most severe drought type identified is an intense multi-seasonal drought type peaking in summer, i.e., the events in 2003, 2015, and 2018. This drought type appeared in all domains of the hydrological cycle and coincided with high air temperatures, causing a high number of and variability in drought impacts. The regional average drought signals of this drought type exhibit typical drought propagation characteristics such as a time lag between meteorological and hydrological drought, whereas propagation characteristics of local drought signals are variable in space. This spatial variability in drought hazard increased when droughts propagated through the hydrological cycle, causing distinct differences among variables, as well as regional average and local drought information. Accordingly, single variable or regional average drought information is not sufficient to fully explain the variety of drought impacts that occurred, supporting the conclusion that in regions as diverse as the case study presented here, large-scale drought monitoring needs to be complemented by local drought information to assess the multifaceted impact of drought.
    Type of Medium: Online Resource
    ISSN: 1684-9981
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2069216-X
    detail.hit.zdb_id: 2064587-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Copernicus GmbH ; 2021
    In:  Hydrology and Earth System Sciences Vol. 25, No. 4 ( 2021-04-15), p. 2009-2025
    In: Hydrology and Earth System Sciences, Copernicus GmbH, Vol. 25, No. 4 ( 2021-04-15), p. 2009-2025
    Abstract: Abstract. The drought of 2018 in central and northern Europe showed once more the large impact that this natural hazard can have on the environment and society. Such droughts are often seen as slowly developing phenomena. However, root zone soil moisture deficits can rapidly develop during periods lacking precipitation and meteorological conditions that favor high evapotranspiration rates. These periods of soil moisture stress can persist for as long as the meteorological drought conditions last, thereby negatively affecting vegetation and crop health. In this study, we aim to characterize past soil moisture stress events over the croplands of southwestern Germany and, furthermore, to relate the characteristics of these past events to different soil and climate properties. We first simulated daily soil moisture over the period 1989–2018 on a 1 km resolution grid, using the physically based hydrological model TRAIN. We then derived various soil moisture stress characteristics, including probability, development time, and persistence, from the simulated time series of all agricultural grid cells (n≈15 000). Logistic regression and correlation were then applied to relate the derived characteristics to the plant-available storage capacity of the root zone and to the climatological setting. Finally, sensitivity analyses were carried out to investigate how results changed when using a different parameterization of the root zone, i.e., soil based or fixed, or when assessing soil moisture drought (anomaly) instead of stress. Results reveal that the majority of agricultural grid cells across the study region reached soil moisture stress during prominent drought years. The development time of these soil moisture stress events varied substantially, from as little as 10 d to over 4 months. The persistence of soil moisture stress varied as well and was especially high for the drought of 2018. A strong control on the probability and development time of soil moisture stress was found to be the storage capacity of the root zone, whereas the persistence was not strongly linearly related to any of the considered controls. On the other hand, the sensitivity analyses revealed the increased control of climate on soil moisture stress characteristics when using a fixed instead of a soil-based root zone storage. Thus, the strength of different controls depends on the assumptions made during modeling. Nonetheless, the storage capacity of the root zone, whether it is a characteristic of the soil or a difference between a shallow or deep rooting crop, remains an important control on soil moisture stress characteristics. This is different for SM drought characteristics, which have little or contrasting relation with the storage capacity of the root zone. Overall, the results give insight to the large spatial and temporal variability in soil moisture stress characteristics and suggest the importance of considering differences in root zone soil storage for agricultural drought assessments.
    Type of Medium: Online Resource
    ISSN: 1607-7938
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2100610-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Remote Sensing, MDPI AG, Vol. 11, No. 20 ( 2019-10-16), p. 2392-
    Abstract: Livestock production is a socioeconomic linchpin in Mongolia and is affected by large-scale livestock die-offs. Colloquially known as dzuds, these die-offs are driven by anomalous climatic events, including extreme cold temperatures, extended snow cover duration (SCD) and drought. As average temperatures across Mongolia have increased at roughly twice the global rate, we hypothesized that increasing cold season surface melt including soil freeze/thaw (FT), snowmelt, and icing events associated with regional warming have become increasingly important drivers of dzud events as they can reduce pasture productivity and inhibit access to grazing. Here, we use daily brightness temperature (Tb) observations to identify anomalous surface melt and icing events across Mongolia from 2003–2016 and their contribution to dzuds relative to other climatic drivers, including winter temperatures, SCD, and drought. We find a positive relationship between surface melt and icing events and livestock mortality during the fall in southern Mongolia and during the spring in the central and western regions. Further, anomalous seasonal surface melt and icing events explain 17–34% of the total variance in annual livestock mortality, with cold temperatures as the leading contributor of dzuds (20–37%). Summer drought showed the greatest explanatory power (43%) but overall had less statistically significant relationships relative to winter temperatures. Our results indicate that surface melt and icing events will become an increasingly important driver of dzuds as annual temperatures and livestock populations are projected to increase in Mongolia.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Copernicus GmbH ; 2020
    In:  Proceedings of the International Association of Hydrological Sciences Vol. 383 ( 2020-09-16), p. 291-295
    In: Proceedings of the International Association of Hydrological Sciences, Copernicus GmbH, Vol. 383 ( 2020-09-16), p. 291-295
    Abstract: Abstract. Numerous indices exist for the description of hydrological drought. The EURO FRIEND-Water Low flow and Drought Group has repeatedly discussed changing paradigms in the perception and use of existing and emerging new indices for hydrological drought identification and characterization. Group members have also tested the communication of different indices to stakeholders in several national and international transdisciplinary research projects. This contribution presents the experience gained with regard to the purpose and applicability of different classes of drought indices. A recent paradigm shift is the use of anomalies, traditionally from climatology, in hydrology. For instance, anomaly-based indices, such as the Standardized Streamflow Index (SSI) and the variable threshold level method to define streamflow deficiencies, are used increasingly for real-time monitoring. How these indices relate to low flows and their impacts may have become less clear as a result. Assessments of the severity of a particular drought may also differ depending on whether return periods based on traditional low flow or drought frequency analyses or whether SSI time series index values are used. These experiences call for a systematic comparison, classification and evaluation of different low flow and drought indices and their usages.
    Type of Medium: Online Resource
    ISSN: 2199-899X
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2827925-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Copernicus GmbH ; 2020
    In:  Natural Hazards and Earth System Sciences Vol. 20, No. 11 ( 2020-11-09), p. 2979-2995
    In: Natural Hazards and Earth System Sciences, Copernicus GmbH, Vol. 20, No. 11 ( 2020-11-09), p. 2979-2995
    Abstract: Abstract. Droughts are multidimensional hazards that can lead to substantial environmental and societal impacts. To understand causes and impacts, multiple perspectives need to be considered. Many studies have identified past drought events and investigated drought propagation from meteorological droughts via soil moisture to hydrological droughts, and some studies have included the impacts of these different types of drought. However, it is not certain whether the increased frequency and severity of drought events in the past decade is unprecedented in recent history. Therefore, we analyze different droughts and their impacts in a regional context using a multidisciplinary approach. We compile a comprehensive and long-term dataset to investigate possible temporal patterns in drought occurrence and place recent drought events into a historical context. We assembled a dataset of drought indices and recorded impacts over the last 218 years in southwestern Germany. Meteorological and river-flow indices were used to assess the natural drought dynamics. In addition, tree-ring data and recorded impacts were utilized to investigate drought events from an ecological and social perspective. Since 1801, 20 extreme droughts have been identified as common extreme events when applying the different indices. All events were associated with societal impacts. Our multi-dataset approach provides insights into similarities but also the unique aspects of different drought indices.
    Type of Medium: Online Resource
    ISSN: 1684-9981
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2069216-X
    detail.hit.zdb_id: 2064587-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Copernicus GmbH ; 2018
    In:  Hydrology and Earth System Sciences Vol. 22, No. 2 ( 2018-02-08), p. 1051-1064
    In: Hydrology and Earth System Sciences, Copernicus GmbH, Vol. 22, No. 2 ( 2018-02-08), p. 1051-1064
    Abstract: Abstract. Human influences can affect streamflow drought characteristics and propagation. The question is where, when and why? To answer these questions, the impact of different human influences on streamflow droughts were assessed in England and Wales, across a broad range of climate and catchments conditions. We used a dataset consisting of catchments with near-natural flow as well as catchments for which different human influences have been indicated in the metadata (“Factors Affecting Runoff”) of the UK National River Flow Archive (NRFA). A screening approach was applied on the streamflow records to identify human-influenced records with drought characteristics that deviated from those found for catchments with near-natural flow. Three different deviations were considered, specifically deviations in (1) the relationship between streamflow drought duration and the base flow index, BFI (specifically, BFIHOST, the BFI predicted from the hydrological properties of soils), (2) the correlation between streamflow and precipitation and (3) the temporal occurrence of streamflow droughts compared to precipitation droughts, i.e. an increase or decrease in streamflow drought months relative to precipitation drought months over the period of record. The identified deviations were then related to the indicated human influences. Results showed that the majority of catchments for which human influences were indicated did not show streamflow drought characteristics that deviated from those expected under near-natural conditions. For the catchments that did show deviating streamflow drought characteristics, prolonged streamflow drought durations were found in some of the catchments affected by groundwater abstractions. Weaker correlations between streamflow and precipitation were found for some of the catchments with reservoirs, water transfers or groundwater augmentation schemes. An increase in streamflow drought occurrence towards the end of their records was found for some of the catchments affected by groundwater abstractions and a decrease in streamflow drought occurrence for some of the catchments with either reservoirs or groundwater abstractions. In conclusion, the proposed screening approaches were sometimes successful in identifying streamflow records with deviating drought characteristics that are likely related to different human influences. However, a quantitative attribution of the impact of human influences on streamflow drought characteristics requires more detailed case-by-case information about the type and degree of all different human influences. Given that, in many countries, such information is often not readily accessible, the approaches adopted here could provide useful in targeting future efforts. In England and Wales specifically, the catchments with deviating streamflow drought characteristics identified in this study could serve as the starting point of detailed case study research.
    Type of Medium: Online Resource
    ISSN: 1607-7938
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2018
    detail.hit.zdb_id: 2100610-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Copernicus GmbH ; 2016
    In:  Hydrology and Earth System Sciences Vol. 20, No. 8 ( 2016-08-12), p. 3277-3287
    In: Hydrology and Earth System Sciences, Copernicus GmbH, Vol. 20, No. 8 ( 2016-08-12), p. 3277-3287
    Abstract: Abstract. Oceanic–atmospheric climate modes, such as El Niño–Southern Oscillation (ENSO), are known to affect the local streamflow regime in many rivers around the world. A new method is proposed to incorporate climate mode information into the well-known ensemble streamflow prediction (ESP) method for seasonal forecasting. The ESP is conditioned on an ENSO index in two steps. First, a number of original historical ESP traces are selected based on similarity between the index value in the historical year and the index value at the time of forecast. In the second step, additional ensemble traces are generated by a stochastic ENSO-conditioned weather resampler. These resampled traces compensate for the reduction of ensemble size in the first step and prevent degradation of skill at forecasting stations that are less affected by ENSO. The skill of the ENSO-conditioned ESP is evaluated over 50 years of seasonal hindcasts of streamflows at three test stations in the Columbia River basin in the US Pacific Northwest. An improvement in forecast skill of 5 to 10 % is found for two test stations. The streamflows at the third station are less affected by ENSO and no change in forecast skill is found here.
    Type of Medium: Online Resource
    ISSN: 1607-7938
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2016
    detail.hit.zdb_id: 2100610-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...