GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-07-04
    Description: Mesospheric winds from three longitudinal sectors at 65°N and 54°N latitude are combined to diagnose the zonal wave numbers (m) of spectral wave signatures during the Southern Hemisphere sudden stratospheric warming (SSW) 2019. Diagnosed are quasi‐10‐ and 6‐day planetary waves (Q10DW and Q6DW, m = 1), solar semidiurnal tides with m = 1, 2, 3 (SW1, SW2, and SW3), lunar semidiurnal tide, and the upper and lower sidebands (USB and LSB, m = 1 and 3) of Q10DW‐SW2 nonlinear interactions. We further present 7‐year composite analyses to distinguish SSW effects from climatological features. Before (after) the SSW onset, LSB (USB) enhances, accompanied by the enhancing (fading) Q10DW, and a weakening of climatological SW2 maximum. These behaviors are explained in terms of Manley‐Rowe relation, that is, the energy goes first from SW2 to Q10DW and LSB, and then from SW2 and Q10DW to USB. Our results illustrate that the interactions can explain most wind variabilities associated with the SSW.
    Description: Plain Language Summary: Sudden stratospheric warming events occur typically over the winter Arctic and are well known for being accompanied by various tides and Rossby waves. A rare SSW occurred in the Southern Hemisphere in September 2019. Here, we combine mesospheric observations from the Northern Hemisphere to study the wave activities before and during the warming event. A dual‐station approach is implemented on high‐frequency‐resolved spectral peaks to diagnose the horizontal scales of the dominant waves. Diagnosed are multiple tidal components, multiple Rossby normal modes, and two secondary waves arising from nonlinear interactions between a tide component and a Rossby wave. Most of these waves do not occur in a climatological sense and occur around the warming onset. Furthermore, the evolution of these waves can be explained using theoretical energy arguments.
    Description: Key Points: Mesospheric winds from multiple longitudes in the NH are combined to diagnose zonal wave numbers of waves during the Antarctic SSW 2019. Diagnosed are Q6DW, Q10DW, M2, SW1, SW2, SW3, and LSB and USB of Q10DW‐SW2 nonlinear interactions. LSB and USB are generated asynchronously, during which their parent waves evolve following the Manley‐Rowe energy relations.
    Description: National Natural Science Foundation of China (NSFC) http://dx.doi.org/10.13039/501100001809
    Description: National Science Foundation (NSF) http://dx.doi.org/10.13039/100000001
    Description: German Research Foundation (DFG)
    Keywords: 551.5 ; sudden stratospheric warming (SSW) ; semidiurnal tides ; nonlinear interactions ; quasi‐10‐day wave ; quasi‐6‐day wave ; Manley‐Rowe relation
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Space Physics 119 (2014): 630-645, doi:10.1002/2013JA018955.
    Description: Using 5 years of all-sky OH airglow imager data over Yucca Ridge Field Station, CO (40.7°N, 104.9°W), from September 2003 to September 2008, we extract and deduce quasi-monochromatic gravity wave (GW) characteristics in the mesopause region. The intrinsic periods are clustered between approximately 4 and 10 min, and many of them are unstable and evanescent. GW occurrence frequency exhibits a clear semiannual variation with equinoctial minima, which is likely related to the seasonal variation of background wind. The anomalous propagation direction in January 2006, with strong southward before major warming starting in 21 January and weak southward propagation afterward, was most likely affected by stratospheric sudden warming. The momentum fluxes show strongly anticorrelated with the tides, with ~180° out of phase in the zonal component. While in the meridional component, the easterly maximum occurred approximately 2–6 h after maximum easterly tidal wind. However, the anticorrelations are both weakest during the summer. The dissipating and breaking of small-scale and high-frequency GW's components could have a potential impact on the general circulation in the mesopause region.
    Description: This work was carried out at the University of Science and Technology of China, with support from the National Natural Science Foundation of China grants (41025016, 41127901, 41225017, 41074108, and 41121003), the National Basic Research Program of China grant 2012CB825605, the Chinese Academy of Sciences Key Research Program KZZD-EW-01, and the Fundamental Research Funds for the Central Universities.
    Description: 2014-07-31
    Keywords: Airglow image ; Mesopause ; Gravity wave ; Momentum flux
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...