GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
Years
  • 1
    Keywords: Tromsø ; Nordland ; Finnmark ; Präquartär ; Fossile Pflanzen
    Type of Medium: Book
    Pages: 210 S , Ill., Kt
    Series Statement: Tromura 81
    Language: Norwegian , English
    Note: Text teilw. engl., teilw. norw
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Sedimentology 31 (1984), S. 0 
    ISSN: 1365-3091
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Four different types of pyritized tubes and three types of pyritized burrow fillings are described from Pleistocene glaciomarine sediments in Andfjorden, northern Norway. The tubes and burrows probably originated from tubicolous and burrowing polychaetes respectively. The decomposition of the organic matter in the tubes and burrows created a reducing micro-environment favouring precipitation of pyrite. By comparison with Holocene tubes from marine sediments in Andfjorden and FugloSyfjorden, it is seen that pyritization commenced with isolated spherules. These spherules with incipient pyrite crystals and framboids were formed mainly on the inner wall of the tube. Presence of a monosulphide in the Holocene Fugløyfjorden material suggests that the pyritization process has reached a later phase; the final result would be a completely pyritized trace fossil. It is shown that single pyrite crystals (octahedra) generally attain greater size in the burrow fillings than in the tubes. The microstructure found in some of the pyritized tubes is interpreted as a reflection of the microstructure in the original wall. Finally, the implications for the depositional environment in Pleistocene in Andfjorden is investigated with reference to the benthic skeletal macrofaunal assemblage in the sequence. The pyritized trace fossils occur frequently in an opportunistic assemblage from a period (c. 14,000–13,000 yr BP) characterized by some oxygen deficiency. Later (13,000–10,000 yr BP) they play a minor role in an established assemblage under improved oxygen conditions.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Thomsen, Jörn; Gutowska, Magdalena A; Saphörster, J; Heinemann, Agnes; Trübenbach, Katja; Fietzke, Jan; Hiebenthal, Claas; Eisenhauer, Anton; Körtzinger, Arne; Wahl, Martin; Melzner, Frank (2010): Calcifying invertebrates succeed in a naturally CO2-rich coastal habitat but are threatened by high levels of future acidification. Biogeosciences, 7(11), 3879-3891, https://doi.org/10.5194/bg-7-3879-2010
    Publication Date: 2024-03-15
    Description: CO2 emissions are leading to an acidification of the oceans. Predicting marine community vulnerability towards acidification is difficult, as adaptation processes cannot be accounted for in most experimental studies. Naturally CO2 enriched sites thus can serve as valuable proxies for future changes in community structure. Here we describe a natural analogue site in the Western Baltic Sea. Seawater pCO2 in Kiel Fjord is elevated for large parts of the year due to upwelling of CO2 rich waters. Peak pCO2 values of 〉230 Pa (〉2300 µatm) and pHNBS values of 〈7.5 are encountered during summer and autumn, average pCO2 values are ~70 Pa (~700 µatm). In contrast to previously described naturally CO2 enriched sites that have suggested a progressive displacement of calcifying auto- and heterotrophic species, the macrobenthic community in Kiel Fjord is dominated by calcifying invertebrates. We show that blue mussels from Kiel Fjord can maintain control rates of somatic and shell growth at a pCO2 of 142 Pa (1400 µatm, pHNBS = 7.7). Juvenile mussel recruitment peaks during the summer months, when high water pCO2 values of ~100 Pa (~1000 µatm) prevail. Our findings indicate that calcifying keystone species may be able to cope with surface ocean pHNBS values projected for the end of this century when food supply is sufficient. However, owing to non-linear synergistic effects of future acidification and upwelling of corrosive water, peak seawater pCO2 in Kiel Fjord and many other productive estuarine habitats could increase to values 〉400 Pa (〉4000 µatm). These changes will most likely affect calcification and recruitment, and increase external shell dissolution.
    Keywords: Acid-base regulation; Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Automated CO2 analyzer (CIBA-Corning 965, UK); Benthic animals; Benthos; Bicarbonate ion; BIOACID; Biological Impacts of Ocean Acidification; Bottles or small containers/Aquaria (〈20 L); Calcification/Dissolution; Calcite saturation state; Calcite saturation state, standard deviation; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, partial pressure; Carbon dioxide, partial pressure, standard deviation; Coast and continental shelf; EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Experimental treatment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Identification; Laboratory experiment; Mollusca; Mytilus edulis; Mytilus edulis, area, dissolved; Mytilus edulis, dissolution severity; Mytilus edulis, extrapallial fluid bicarbonate; Mytilus edulis, extrapallial fluid carbonate ion; Mytilus edulis, extrapallial fluid partial pressure of carbon dioxide; Mytilus edulis, extrapallial fluid pH; Mytilus edulis, extrapallial fluid pK; Mytilus edulis, extrapallial fluid total carbon; Mytilus edulis, haemolymph, apparent dissociation constant of carbon acid; Mytilus edulis, haemolymph, bicarbonate ion; Mytilus edulis, haemolymph, calcium ion; Mytilus edulis, haemolymph, carbonate ion; Mytilus edulis, haemolymph, magnesium ion; Mytilus edulis, haemolymph, partial pressure of carbon dioxide; Mytilus edulis, haemolymph, pH; Mytilus edulis, haemolymph, potassium ion; Mytilus edulis, haemolymph, sodium ion; Mytilus edulis, haemolymph, total dissolved inorganic carbon; Mytilus edulis, shell length; Mytilus edulis, weight, dry; Mytilus edulis, weight, shell; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Potentiometric titration, VINDTA (marianda); Replicates; Salinity; Scanning electron microscope (SEM); Single species; SOMMA autoanalyzer; Temperate; Temperature, water; WTW 340i pH-analyzer and WTW SenTix 81-electrode
    Type: Dataset
    Format: text/tab-separated-values, 4825 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...