GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
  • 1
    Online Resource
    Online Resource
    Berlin, Heidelberg :Springer Berlin / Heidelberg,
    Keywords: Plate tectonics. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (128 pages)
    Edition: 1st ed.
    ISBN: 9783662092828
    DDC: 555.2
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Atlas ; Japan ; Shimanto-Zone ; Tektonik
    Type of Medium: Map
    Pages: 124 S , zahlr. Ill., graph. Darst., Kt , 31 cm
    ISBN: 3540553444 , 0387553444
    DDC: 551.80952
    Language: English
    Note: Literaturverz. S. 122 - 124
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Type of Medium: Book
    Pages: 305 Seiten , Karten, graphische Darstellungen
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Earth and Planetary Sciences 29 (2001), S. 109-134 
    ISSN: 0084-6597
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Geosciences , Physics
    Notes: Abstract Growth of the Japanese arc system, which has mainly taken place along the continental margin of Asia since the Permian, is the result of subduction of the ancient Pacific ocean floor. Backarc basin formation in the Tertiary shaped the present-day arc configuration. The neotectonic regime, which is characterized by strong east-west compression, has been triggered by the eastward motion of the Amur plate in the Quaternary. The tectonic evolution of the Japanese arc system includes formation of rock assemblages common in most orogenic belts. Because the origin and present-day tectonics of these assemblages are better defined in the case of the Japanese arc system, study of the system provides useful insight into orogenesis and continental crust evolution.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    The @island arc 1 (1992), S. 0 
    ISSN: 1440-1738
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    The @island arc 1 (1992), S. 0 
    ISSN: 1440-1738
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract The Late Oligocene-Early Miocene Nabae Sub-belt of the Shimanto Accretionary Prism was created coevally (ca 25-15 Ma) with the opening of the Shikoku back-arc basin, located to the south of the southwest Japan convergent margin. The detailed geology of the sub-belt has been controversial and the interaction of the Shimanto accretionary prism and the opening of the Shikoku Basin has been ambiguous. New structural analysis of the sub-belt has led to a new perception of its structural framework and has significant bearing on the interpretation of the Neogene tectonics of southwest Japan.The sub-belt is divided into three units: the Nabae Complex; the Shijujiyama Formation; and the Maruyama Intrusive Suite. The Nabae Complex comprises coherent units and mélange, all of which show polyphase deformation. The first phase of deformation appears to have involved landward vergent thrusting of coherent units over the mélange terrane. The second phase of deformation involved continued landward vergent shortening. The Shijujiyama Formation, composed mainly of mafic volcanics and massive sandstone, is interpreted as a slope basin deposited upon the Nabae Complex during the second phase of deformation. The youngest deformational pulse involved regional flexing and accompanying pervasive faulting. During this event, mafic rocks of the Maruyama Intrusive Suite intruded the sub-belt. Fossil evidence in the Nabae Complex and radiometric dates on the intrusive rocks indicate that this tectonic scheme was imprinted upon the sub-belt between ∼23 and ∼14 Ma.The timing of accretion and deformation of the sub-belt coincides with the opening of the Shikoku Basin; hence, subduction and spreading operated simultaneously. Accretion of the Nabae Sub-belt was anomalous, involving landward vergent thrusting, magmatism in newly accreted strata and regional flexing. It is proposed that this complex and anomalous structural history is largely related to the subduction of the active Shikoku Basin spreading ridge and associated seamounts.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    The @island arc 1 (1992), S. 0 
    ISSN: 1440-1738
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    The @island arc 1 (1992), S. 0 
    ISSN: 1440-1738
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract The Nankai accretionary prism, off southwest Japan represents one of the best developed clastic prisms in the world. A combination of swath mapping including Sea Beam and ‘IZANAGI’ sidescan sonar and closely spaced seismic reflection data was used to investigate the relationship between the progressive landward change in surface morphology and the internal structural evolution of the prism. The prism surface is divided into three zones sub-parallel to the trough axis on the basis of the IZANAGI backscattering image. The frontal part of the prism is characterized by several continuous lineaments that are approximately perpendicular to the plate convergence direction. These lineaments correspond to anticlinal ridges caused by active imbricate thrusting. Landward, these anticlinal ridges become progressively masked by fine-grained hemipelagic slope sediments that are constantly supplied to the entire prism slope. However, these overlying sediments show little deformation. This implies a change in deformation style from frontal thrusting with fault-bend folds to internal refolding of thrust sheets. In the middle to upper prism slope, the IZANAGI image shows numerous landslide features and large fault scarps, suggesting that exposed sediments are lithified enough to fail in brittle mode compared with the wet sediment deformation at the prism toe. Prism evolution is strongly affected by the decollement depth which may be indirectly controlled by oceanic basement relief; a topographic embayment coincides with a regional minimum of sediment offscraping where a basement high has been subducted. The small tapered prism observed in the embayment may be due to lateral supply of overpressured pore fluids from the adjacent prism. Strain caused by the differential rate of prism growth across the basement relief forms faults trending at high angles to the trough axis.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1440-1738
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract  Seismic reflections across the accretionary prism of the North Sulawesi provide excellent images of the various structural domains landward of the frontal thrust. The structural domain in the accretionary prism area of the North Sulawesi Trench can be divided into four zones: (i) trench area; (ii) Zone A; (iii) Zone B; and (iv) Zone C. Zone A is an active imbrication zone where a decollement is well imaged. Zone B is dominated by out-of-sequence thrusts and small slope basins. Zone C is structurally high in the forearc basin, overlain by a thick sedimentary sequence. The subducted and accreted sedimentary packages are separated by the decollement. Topography of the oceanic basement is rough, both in the basin and beneath the wedge. The accretionary prism along the North Sulawesi Trench grew because of the collision between eastern Sulawesi and the Bangai–Sula microcontinent along the Sorong Fault in the middle Miocene. This collision produced a large rotation of the north arm of Sulawesi Island. Rotation and northward movement of the north arm of Sulawesi may have resulted in southward subduction and development of the accretionary wedge along North Sulawesi. Lateral variations are wider in the western areas relative to the eastern areas. This is due to greater convergence rates in the western area: 5 km/My for the west and 1.5 km/My for the east. An accretionary prism model indicates that the initiation of growth of the accretionary prism in the North Sulawesi Trench occurred approximately 5 Ma. A comparison between the North Sulawesi accretionary prism and the Nankai accretionary prism of Japan reveals similar internal structures, suggesting similar mechanical processes and structural evolution.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    The @island arc 5 (1996), S. 0 
    ISSN: 1440-1738
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...