GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 14 (2002), S. 1182-1195 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Direct numerical simulation is used to investigate stratified turbulent flow over a series of prescribed moving water waves at a bulk Reynolds number Re=8000 and waveslope ak=0.1. Unstable, neutral, and stable stratifications are considered for a range of wave phase speeds c. Stratification is shown to significantly alter the mean vertical profiles of velocity and temperature, turbulence variances, wave-induced flow fields, and surface form stress. For the range of conditions considered, the surface form stress (drag) and flow patterns (critical-layer height and streamlines) are well correlated with the friction velocity u*, which therefore contains the essential information about stratification influences. Nonseparated sheltering [Belcher and Hunt, Annu. Rev. Fluid. Mech. 30, 507 (1998)], which determines the drag in neutral flow over stationary topography, is modified by stratification and the movement of the underlying waves. The variation of the form stress with phase speed is correlated with the movement of the critical layer above the surface. Compared to neutral flow at a given phase speed, the flow patterns with unstable stratification are similar to the flow patterns over slower moving waves while stable stratification results in flow patterns typical of faster moving waves. This behavior is qualitatively captured by the wave age parameter c/u*. The wave-induced temperature field responds to the wave-induced velocity fields by forming positive and negative patches over the wave crests and troughs, respectively, with the resulting wave-induced heat flux as much as 15% of the total surface heat flux. Estimates of wave growth from the DNS are in reasonable agreement with field observations and laboratory experiments, and they are larger than predictions from high Reynolds-number, second-order closure models for c/u*〈10. For c/u*〉10, the present calculations predict less negative form stress (or less damping) of the waves compared to second-order closure models. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 8 (1996), S. 2626-2639 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Coherent structures and the dynamics of a neutrally stratified planetary boundary layer flow are studied through a large eddy simulation, which includes surface roughness, Coriolis force, and a capping inversion. Quadrant analysis and flow visualization show that low-speed negative momentum flux (ejection) is the dominant feature throughout most of the boundary layer. The initiation of vortical structures is observed to be associated with vorticity sheets and pressure maxima, which are formed dynamically when low-speed negative momentum flux collides with either high-speed negative momentum flux (sweep) or the mean flow. Four dimensional conditional averages are used to study the statistical behavior of ejections and sweeps. The shape, strength, lifetime, and origin of the conditionally sampled structures at three different heights are discussed. Near the surface, sweeps are observed to induce ejections when colliding with the surface. The evolution of sweep-induced ejections near the wall is discussed. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 71 (1994), S. 247-276 
    ISSN: 1573-1472
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract A long-standing problem in large-eddy simulations (LES) of the planetary boundary layer (PBL) is that the mean wind and temperature profiles differ from the Monin-Obukhov similarity forms in the surface layer. This shortcoming of LES has been attributed to poor grid resolution and inadequate sub-grid-scale (SGS) modeling. We study this deficiency in PBL LES solutions calculated over a range of shear and buoyancy forcing conditions. The discrepancy from similarity forms becomes larger with increasing shear and smaller buoyancy forcing, and persists even with substantial horizontal grid refinement. With strong buoyancy forcing, however, the error is negligible. In order to achieve better agreement between LES and similarity forms in the surface layer, a two-part SGS eddy-viscosity model is proposed. The model preserves the usual SGS turbulent kinetic energy formulation for the SGS eddy viscosity, but it explicitly includes a contribution from the mean flow and a reduction of the contributions from the turbulent fluctuations near the surface. Solutions with the new model yield increased fluctuation amplitudes near the surface and better correspondence with similarity forms out to a distance of 0.1–0.2 times the PBL depth, i.e., a typical surface-layer depth. These results are also found to be independent of grid anisotropy. The new model is simple to implement and computationally inexpensive.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-1472
    Keywords: Coherent structure ; Field observation ; Forest ; Large-eddy simulation (LES) ; Neutrally stratified shear-driven flow ; Turbulent statistics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Turbulent statistics of neutrally stratified shear-driven flow within and above a sparse forest canopy are presented from a large-eddy simulation (LES) and compared with those from observations within and above a deciduous forest with similar height and foliage density. First- and second-order moments from the LES agree with observations quite well. Third-order moments from the LES have the same sign and similar vertical patterns as those from the observations, but the LES yields smaller magnitudes of such higher-order moments. Turbulent spectra and cospectra from the LES agree well with observations above the forest. However, at the highest frequencies, the LES spectra have steeper slopes than observations. Quadrant and conditional analyses of the LES resolved-scale flow fields also agree with observations. For example, both LES and observation find that sweeps are more important than ejections for the transport of momentum within the forest, while inward and outward interaction contributions are both small, except near the forest floor. The intermittency of the transport of momentum and scalar increases with depth into the forest. Finally, ramp structures in the time series of a passive scalar at multiple levels within and above the forest show similar features to those measured from field towers. Two-dimensional (height-time cross-section) contours of the passive scalar and wind vectors show sweeps and ejections, and the characteristics of the static pressure perturbation near the ground resemble those deduced from field tower-based measurements. In spite of the limited grid resolution (2 m × 2 m × 2 m) and domain size (192 m × 192 m × 60 m) used in this LES, we demonstrate that the LES is capable of resolving the most important characteristics of the turbulent flow within and above a forest canopy.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-1472
    Keywords: closure ; large-eddy simulation ; comparison ; turbulent
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract This paper compares a number of one-dimensional closure models for the planetary boundary layer (PBL) that are currently in use in large-scale atmospheric models. Using the results of a large-eddy simulation (LES) model as the standard of comparison, the PBL models are evaluated over a range of stratifications from free convective to neutral and a range of surface shear stresses. Capping inversion strengths for the convective cases range from weakly to strongly capped. Six prototypical PBL models are evaluated in this study, which focuses on the accuracy of the boundary-layer fluxes of momentum, heat, and two passive scalars. One scalar mimics humidity and the other is a top-down scalar entrained into the boundary layer from above. A set of measures based on the layer-averaged differences of these fluxes from the LES solutions is developed. In addition to the methodological framework and suite of LES solutions, the main result of the evaluation is the recognition that all of the examined PBL parameterizations have difficulty reproducing the entrainment at the top of the PBL, as given by the LES, in most parameter regimes. Some of the PBL models are relatively accurate in their entrainment flux in a subset of parameter regimes. The sensitivity of the PBL models to vertical resolution is explored, and substantive differences are observed in the performance of the PBL models, relative to LES, at low resolution typical of large scale atmospheric models.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 95 (2000), S. 1-30 
    ISSN: 1573-1472
    Keywords: Large-eddy simulation ; Stable boundary layer ; Gravity waves ; Nocturnal jet
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract In this work, we study the characteristics of a stably stratifiedatmospheric boundary layer using large-eddy simulation (LES).In order to simulate the stable planetary boundary layer, wedeveloped a modified version of the two-part subgrid-scalemodel of Sullivan et al. This improved version of themodel is used to simulate a highly cooled yet fairly windy stableboundary layer with a surface heat flux of(Wθ)o = -0.05 m K s-1and a geostrophic wind speed of Ug = 15 m s-1.Flow visualization and evaluation of the turbulencestatistics from this case reveal the development ofa continuously turbulent boundary layer with small-scalestructures. The stability of the boundary layercoupled with the presence of a strong capping inversionresults in the development of a dominant gravity wave atthe top of the stable boundary layer that appears to be relatedto the most unstable wave predicted by the Taylor–Goldsteinequation. As a result of the decay of turbulence aloft,a strong-low level jet forms above the boundary layer.The time dependent behaviour of the jet is compared with Blackadar'sinertial oscillation analysis.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 80 (1996), S. 167-202 
    ISSN: 1573-1472
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract A method for performing nested grid calculations with a large-eddy simulation code is described. A common numerical method is used for all meshes, and the grid architecture consists of a single outer or coarse grid, and nested or fine grids, which overlap in some common region. Inter-grid communication matches the velocity, pressure and potential temperature fields in the overlap region. Resolved and sub-grid scale (SGS) turbulent fluxes and kinetic energy on the fine grid are averaged to the coarse grid using a conservation rule equivalent to Germano's identity used to develop dynamic SGS models. Simulations of a slightly convective, strong shear planetary boundary layer were carried out with varying surface-layer resolutions. Grid refinements in the (x, y, z) directions of up to (5, 5, 2) times were employed. Two-way interaction solutions on the coarse and fine meshes are successfully matched in the overlap region on an instantaneous basis, and the turbulent motions on the fine grid blend smoothly into the coarse grid across the grid interface. With surface-layer grid nesting, significant increases in resolved eddy fluxes and variances are found. The energy-scale content of the vertical velocity, and hence vertical turbulent fluxes, appear to be most influenced by increased grid resolution. Vertical velocity spectra show that the dominant scale shifts towards higher wavenumbers (smaller scales) and the magnitude of the peak energy is increased by more than a factor of 3 with finer resolution. Outside of the nested region the average heat and momentum fluxes and spectra are slightly influenced by the fine resolution in the surface layer. From these results we conclude that fine resolution is required to resolve the details of the turbulent motions in the surface layer. At the same time, however, increased resolution in the surface layer does not appreciably alter the ensemble statistics of the resolved and SGS motions outside of the nested region.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 36 (2009): L10603, doi:10.1029/2009GL037620.
    Description: Representing upper ocean turbulence accurately in models remains a great challenge for improving weather and climate projections. Langmuir circulation (LC) is a turbulent process driven by wind and surface waves that plays a key role in transferring momentum, heat, and mass in the oceanic surface layer. We present a direct comparison between observations and large eddy simulations, based on the wave-averaged Navier-Stokes equation, of an LC growth event. The evolution of cross-wind velocity variance and spatial scales, as well as mixed layer deepening are only consistent with simulations if LC effects are included in the model. Our results offer a validation of the large eddy simulation approach to understanding LC dynamics, and demonstrate the importance of LC in ocean surface layer mixing.
    Description: This research was supported by the Office of Naval Research through grants N00014-09-M-0112 (TK) and N00014-06-1-0178 (AP, JT). TK also received support from a Woods Hole Oceanographic Institution Cooperative Institute for Climate and Ocean Research Postdoctoral Scholarship.
    Keywords: Langmuir circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): C08005, doi:10.1029/2011JC006971.
    Description: Langmuir circulation (LC) is a turbulent process driven by wind and surface waves that plays a key role in transferring momentum, heat, and mass in the oceanic surface layer. On the coastal shelves the largest-scale LC span the whole water column and thus couple the surface and bottom boundary layers and enhance turbulent mixing. Observations and large eddy simulations (LES) of a shallow coastal ocean demonstrate that these relatively large scale Langmuir cells are strongly influenced by crosswind tidal currents. Two mechanisms by which crosswind tidal shear may distort and disrupt Langmuir cells are proposed. The first mechanism involves cell shearing due to differential advection across the whole cell. For the second mechanism, middepth vertical LC currents advect sheared mean crosswind current, leading to the attraction of upwelling and downwelling regions, so that LC cells are unsustainable when both regions overlap. Scaling arguments indicate that LC cells are more susceptible to crosswind shear distortion for smaller LC surface velocity convergence and greater cell aspect ratio (vertical to horizontal LC scale), which is consistent with the results obtained from the observations and LES. These results imply that scaling of LC characteristics in a coastal ocean differs from that in the open ocean, which has important practical implications for parameterizing enhanced mixing due to LC.
    Description: This research was supported by the Office of Naval Research through grant N00014‐06‐1‐0178 (A.P., J.T.). Author T.K. received support from Faculty Startup Funds of the University of Delaware College of Earth, Ocean, and Environment.
    Keywords: Langmuir circulation ; Boundary layer dynamics ; Tides
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 40 (2013): 3672–3676, doi:10.1002/grl.50708.
    Description: Diurnal restratification of the ocean surface boundary layer (OSBL) represents a competition between mixing of the OSBL and solar heating. Langmuir turbulence (LT) is a mixing process in the OSBL, driven by wind and surface waves, that transfers momentum, heat, and mass. Observations in nonequilibrium swell conditions reveal that the OSBL does not restratify despite low winds and strong solar radiation. Motivated by observations, we use large-eddy simulations of the wave-averaged Navier-Stokes equations to show that LT is capable of inhibiting diurnal restratification of the OSBL. Incoming heat is redistributed vertically by LT, forming a warmer OSBL with a nearly uniform temperature. The inhibition of restratification is not reproduced by two common Reynolds-averaged Navier-Stokes equation models, highlighting the importance of properly representing sea-state dependent LT dynamics in OSBL models.
    Description: This work was supported by the U.S. National Science Foundation (Grant OCE-1130678).
    Description: 2014-01-30
    Keywords: Swell ; Upper ocean turbulence ; Restratification ; Diurinal heating ; Langmuir turbulence ; Langmuir circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...