GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Aufsatzsammlung
    Type of Medium: Book
    Pages: IV S., S.3707-3950 , graph. Darst., Kt
    Series Statement: Deep-sea research 49,18
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Annales geophysicae 12 (1994), S. 840-855 
    ISSN: 0992-7689
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract A cyclonic gyre controls the advection of source waters into the formation areas of bottom water in the southern and western parts of the Weddell Sea and the subsequent transport of modified water masses to the north. Determination of the structure of the Weddell Gyre and of the associated transports was one of the objectives of the “Weddell Gyre Study” which began in September 1989 and ended in January 1993. The collected data set comprises records of moored current meters and profiles of temperature and salinity distributed along a transect between the northern tip of the Antarctic Peninsula and Kapp Norvegia. The circulation pattern on the transect is dominated by stable boundary currents of several hundred kilometers width at the eastern and western sides of the basin. They are of comparable size on both sides and provide nearly 90% of the volume transport of the gyre which amounts to 29.5 Sv. In the interior, a weak anticyclonic cell of 800 km diameter transports less than 4 Sv. Apart from the continental slopes, the near-bottom currents flow at some locations in an opposite direction to those in the water column above, indicating a significant baroclinic component of the current field. The intensity of the boundary currents is subject to seasonal fluctuations, whereas in the interior, time scales from days to weeks dominate. The large-scale circulation pattern is persistent during the years 1989 to 1991. The heat transport into the southern Weddell Sea is estimated to be 3.48×1013 W. This implies an equivalent heat loss through the sea surface of 19 W m−2, as an average value for the area south of the transect. The derived salt transport is not significantly different from zero; consequently, the salt gain by sea ice formation has to compensate almost entirely the fresh water gain from the melting ice shelves and from precipitation. Estimation of water mass formation rates from the thermohaline differences of the inflow and outflow through the transect indicates that 6.0 Sv of Warm Deep Water are transformed into 2.6 Sv of Weddell Sea Bottom Water, into 1.2 Sv of Weddell Sea Deep Water, and into 2.2 Sv of surface water.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Polar biology 16 (1996), S. 409-422 
    ISSN: 1432-2056
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The development of the phytoplankton bloom and its relation to water column stabilisation during the transition from early to high summer (of 1991) in the seasonally ice-covered zone of the Barents Sea were studied from a meridional transect of repeated hydrographic/biological stations. The water column stabilisation is described in detail with the aid of vertical profiles of the Brunt-Väisälä frequency squared (N2). The contributions of seasonal warming and ice melting to stabilisation are elucidated by determining the effects of temperature and salinity on N2. The spring bloom in 1991 migrated poleward from June to July by about 400 km, associated with the retreat of the ice edge. The spring bloom culminated with maximum chlorophyll concentrations in the mixed layer about 100–300 km north of the centre of the meltwater lens, at its northern edge, where the ice cover was still substantial. From the distribution of N2 it becomes obvious that the bloom starts at the very beginning of stabilisation, which results solely from the release of meltwater. The increase in temperature due to the seasonal warming does not contribute to the onset of vernal blooming; temperature starts to contribute to the stratification later, when the spring bloom has ceased due to the exhaustion of nutrients in the mixed layer. By that time a deep chlorophyll maximum has formed in the seasonal pycnocline, 20–30 m below the base of the mixed layer. The effect of the seasonal ice cover on the mean areal new primary production is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2056
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  The development of the phytoplankton bloom and its relation to water column stabilisation during the transition from early to high summer (of 1991) in the seasonally ice-covered zone of the Barents Sea were studied from a meridional transect of repeated hydrographic/biological stations. The water column stabilisation is described in detail with the aid of vertical profiles of the Brunt-Väisälä frequency squared (N2). The contributions of seasonal warming and ice melting to stabilisation are elucidated by determining the effects of temperature and salinity on N2. The spring bloom in 1991 migrated poleward from June to July by about 400 km, associated with the retreat of the ice edge. The spring bloom culminated with maximum chlorophyll concentrations in the mixed layer about 100–300 km north of the centre of the meltwater lens, at its northern edge, where the ice cover was still substantial. From the distribution of N2 it becomes obvious that the bloom starts at the very beginning of stabilisation, which results solely from the release of meltwater. The increase in temperature due to the seasonal warming does not contribute to the onset of vernal blooming; temperature starts to contribute to the stratification later, when the spring bloom has ceased due to the exhaustion of nutrients in the mixed layer. By that time a deep chlorophyll maximum has formed in the seasonal pycnocline, 20–30 m below the base of the mixed layer. The effect of the seasonal ice cover on the mean areal new primary production is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-10-25
    Description: Diatoms of the iron-replete continental margins and North Atlantic are key exporters of organic carbon. In contrast, diatoms of the iron-limited Antarctic Circumpolar Current sequester silicon, but comparatively little carbon, in the underlying deep ocean and sediments. Because the Southern Ocean is the major hub of oceanic nutrient distribution, selective silicon sequestration there limits diatom blooms elsewhere and consequently the biotic carbon sequestration potential of the entire ocean. We investigated this paradox in an in situ iron fertilization experiment by comparing accumulation and sinking of diatom populations inside and outside the iron-fertilized patch over 5 wk. A bloom comprising various thin- and thick-shelled diatom species developed inside the patch despite the presence of large grazer populations. After the third week, most of the thinner-shelled diatom species underwent mass mortality, formed large, mucous aggregates, and sank out en masse (carbon sinkers). In contrast, thicker-shelled species, in particular Fragilariopsis kerguelensis, persisted in the surface layers, sank mainly empty shells continuously, and reduced silicate concentrations to similar levels both inside and outside the patch (silica sinkers). These patterns imply that thick-shelled, hence grazer-protected, diatom species evolved in response to heavy copepod grazing pressure in the presence of an abundant silicate supply. The ecology of these silica-sinking species decouples silicon and carbon cycles in the iron-limited Southern Ocean, whereas carbon-sinking species, when stimulated by iron fertilization, export more carbon per silicon. Our results suggest that large-scale iron fertilization of the silicate-rich Southern Ocean will not change silicon sequestration but will add carbon to the sinking silica flux.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-03-02
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Royal Meteorological Society
    In:  Quarterly Journal of the Royal Meteorological Society, 112 (471). pp. 29-42.
    Publication Date: 2019-01-21
    Description: The current profile generated by a steady wind stress is disturbed by the diurnal variation of mixed layer depth forced by solar heating. Momentum diffused deep at night is abandoned to rotate inertially during the day when the mixed layer is shallow and then re-entrained next night when it deepens. The resulting variation of current profile has been calculated with a one-dimensional model in which power supply to turbulence determines the profile of eddy viscosity. The resulting variations of current velocity at fixed depths are so complicated that it is not surprising that current meter measurements have seldom yielded the classical Ekman solution. However, the progressive vector diagrams do exhibit an Ekman-like response (albeit with superimposed inertial disturbances) suggesting that the model might be tested by tracking drifters designed to follow the flow at fixed depths. The inertial rotation of the current in the diurnal thermocline leads to a diurnal jet, the dynamical equivalent of the nocturnal jet in the atmospheric boundary layer over land. The role of inertial currents in deepening the mixed layer is clarified, leading to proposals for improving the turbulence parametrizations used in models of the upper ocean. The model predicts that the diurnal thermocline contains two layers of persistent vigorous turbulence separated by a thicker band of patchy turbulence in otherwise laminar flow.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Reidel
    In:  In: The oceanic surface: wave Breaking, Turbulent Mixing and radio Probing. , ed. by Toba, Y. and Mitsuvasu, H. Reidel, Dordrecht, pp. 487-507.
    Publication Date: 2012-06-18
    Type: Book chapter , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 106 (C5). pp. 9057-9073.
    Publication Date: 2019-09-23
    Description: Time series of sea ice draft in the Weddell Sea are evaluated together with hydrographic observations, satellite passive microwave data, and ice drift for estimation of the freshwater fluxes into and out of the Weddell Sea. Ice draft is measured with moored upward looking sonars since 1990 along two transects across the Weddell Gyre. One transect, extending from the tip of the Antarctic Peninsula to Kapp Norvegia, was sampled between 1990 and 1994 and covers the flow into and out of the southern Weddell Sea. The other transect, sampled since 1996 and extending from the Antarctic continent northward along the Greenwich meridian, covers the exchange of water masses between the eastern and the western Weddell Sea. In order to relate results obtained during the different time periods, empirical relationships are established between the length of the sea ice season, derived from the satellite passive microwave data and defined as the number of days per year with the sea ice concentration exceeding 15%, and (1) the annual mean ice draft and (2) the annual mean ice volume transport. By using these empirical relationships, estimates of annual mean ice drafts and ice volume transports are derived at all mooring sites for the period February 1979 through February 1999. Wind and current force a westward ice transport in the coastal areas of the eastern Weddell Sea and a northward ice transport in the west. During the 2-year period 1991/1992 the mean ice volume export from the Weddell Sea is (50 ± 19) × 103 m3 s−1. This freshwater export is representative for a longer-term (20-year) mean and exceeds the average amount of freshwater gained by precipitation and ice shelf melt by about 19×103 m3 s−1, yielding an upper bound for the formation rate of newly ventilated bottom water in the Weddell Sea of 2.6 Sv.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...