GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    [s.l.] : Nature Publishing Group
    Nature 349 (1991), S. 110-110 
    ISSN: 1476-4687
    Quelle: Nature Archives 1869 - 2009
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Notizen: [Auszug] SIR -Everson et al.1 discussed the implications of new measurements of target strength for estimating the abundance of krill in the Southern Ocean. Their conclusions were first, that previously used equations2 relating target strength to physical size of these animals were greatly in error ...
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    Acoustical Society of America
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © Acoustical Society of America, 2004. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 116 (2004): 239-244, doi:10.1121/1.1675813.
    Beschreibung: Recent laboratory measurements of acoustic backscattering by individual benthic shells have isolated the edge-diffracted echo from echoes due to the surface of the main body of the shell. The data indicate that the echo near broadside incidence is generally the strongest for all orientations and is due principally to the surface of the main body. At angles well away from broadside, the echo levels are lower and are due primarily to the diffraction from the edge of the shell. The decrease in echo levels from broadside incidence to well off broadside is shown to be reasonably consistent with the decrease in acoustic backscattering from normal incidence to well off normal incidence by a shell-covered seafloor. The results suggest the importance of the edge of the shell in off-normal-incidence backscattering by a shell-covered seafloor. Furthermore, when considering bistatic diffraction by edges, there are implications that the edge of the shell (lying on the seafloor) can cause significant scattering in many directions, including at subcritical angles.
    Beschreibung: This research was supported by the U.S. Office of Naval Research (Grant No. N00014-02-1-0095) and the Woods Hole Oceanographic Institution (WHOI), Woods Hole, MA.
    Schlagwort(e): Underwater sound ; Acoustic wave diffraction ; Acoustic wave scattering ; Echo
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © Acoustical Society of America, 1992. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 92 (1992): 1665-1678, doi:10.1121/1.403906.
    Beschreibung: Sonar echoes from unresolved features of rough objects tend to interfere with each other. Because of these interferences, properties of the echoes, such as its envelope level, will vary from realization to realization of stochastically rough objects. In this article, the nature of the fluctuations of the backscattered echo envelope of rough solid elastic elongated objects is investigated. A general formulation is initially presented after which specific formulas are derived and numerically evaluated for straight finite-length cylinders. The study uses both the approximate modal-series- and Sommerfeld–Watson-transformation-based deformed cylinder solutions presented in the first part of this series [T. K. Stanton, J. Acoust. Soc. Am. 92, XXX (1992)]. The fluctuations of the backscattered echo envelope are related to the Rice probability density function (PDF) and shown to depend upon δ/a and [script L]/L in the Rayleigh scattering region (ka≪1) and kδ and [script L]/L in the geometric region (ka≫1), where δ is the rms roughness, a is the radius of the cylinder, [script L] is the correlation length of the roughness, L is the length of the cylinder, and k is the acoustic wave number in the surrounding fluid. There are similarities shown between these fluctuations in the geometric region and those from rough planar interfaces. In addition, analytical expressions and numerical examples show that the fluctuation or ``incoherent'' component of the scattered field is random only in amplitude—its phase approaches a constant value, in phase with the mean scattered field, which needed to be taken into account in the formulation. Finally, applications of the theory developed in this article to backscatter data involving live marine shrimp-like organisms are discussed.
    Beschreibung: This work was supported by the U.S. Office of Naval Research Grant Nos. N00014-89-J-1729 and N00014-90-J-1804.
    Schlagwort(e): Sound waves ; Backscattering ; Fluctuations ; Roughness ; Cylinders ; Interference ; Underwater ; Shrimp
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    facet.materialart.
    Unbekannt
    Acoustical Society of America
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © Acoustical Society of America, 1990. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 88 (1990): 1619-1633, doi:10.1121/1.400321.
    Beschreibung: Describing the scattering of sound by elongated objects with high aspect ratios (ratio of length to diameter) usually involves great numerical difficulties. The recently developed deformed cylinder solution was shown to be increasingly accurate in the limit of very high aspect ratios (≥5:1) while requiring relatively low computation times and was applied to objects of constant composition [T. K. Stanton, ``Sound scattering by cylinders of finite length. III. Deformed cylinders,'' J. Acoust. Soc. Am. 86, 691–705 (1989)]. In this article, the approximate formulation is used to describe scattering by prolate spheroids, straight finite cylinders, and uniformly bent cylinders where the objects are composed of an elastic shell surrounded by fluid and filled with either a fluid or gas. The calculations are compared with those involving spherical shells based on the formulation derived in Goodman and Stern [J. Acoust. Soc. Am. 34, 338–344 (1962)]. The calculations are made over a wide range of frequencies and shell thicknesses (ranging from solid elastic objects to thin-shelled objects). Since the deformed cylinder formulation is most accurate for angles of incidence normal or near normal to the lengthwise axis, the calculations are limited to broadside incidence. The simulations show significant variations in the modal interference structure as the shell thickness and shape are varied. Comparisons are also made between predictions and laboratory data involving straight and bent finite-length cylindrical shells (stainless steel) with 3:1 aspect ratios and 52% shell thicknesses. The study not only shows reasonable agreement between the predictions and data, but also illustrates the dramatic change in scattering cross section due to the bend of the object (12 dB in this case).
    Beschreibung: This work was supported in part by the U.S. Office of Naval Research
    Schlagwort(e): Scattering ; Sound waves ; Shells ; Cylindrical configuration ; Spherical configuration ; Cross sections
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    facet.materialart.
    Unbekannt
    Acoustical Society of America
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © Acoustical Society of America, 1992. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 92 (1992): 1641-1664, doi:10.1121/1.403905.
    Beschreibung: By use of the recently published deformed cylinder formulation [T. K. Stanton, J. Acoust. Soc. Am. 86, 691–705 (1989)], the scattered field due to rough elongated dense elastic objects is derived. The (one-dimensional) roughness is characterized by axial variations of radius. Explicit expressions are derived describing both the mean and mean square of the stochastic scattered field for the rough straight finite length cylinder (broadside incidence) for both ka≪1 and ka≫1 (k is the acoustic wave number and a is the radius) while only the mean is calculated for the prolate spheroid, uniformly bent finite cylinder, and infinitely long cylinder for ka≫1 (again, all broadside incidence). The modal-series-based solution is used in the ka≪1 case as the modal solution simplifies to the sum of two terms (monopole and dipole-like terms). For ka≫1, a more convenient approximate ``ray'' solution is used in place of the modal series solution. The results show that (1) when ka≪1 the roughness-induced variations of the mean and mean-square scattered fields due to the rough straight finite cylinder depend on the roughness, but are independent of frequency—an effect that has no counterpart in the area of scattering by rough planar interfaces. (2) When ka≫1 the mean specular (geometrically reflected) and Rayleigh surface elastic waves of the scattered field of each object are attenuated due to the roughness and their variations are dependent upon the frequency. In addition, the (roughness-induced) attenuation of the Rayleigh wave depends on the number of times the wave has circumnavigated the object. The mean-square values for the straight finite cylinder are attenuated in a similar manner with the additional dependence upon the correlation distance of the surface.
    Beschreibung: This work was supported by the U.S. Office of Naval Research (Grant No. N00014-89-J-1729).
    Schlagwort(e): Sound waves ; Scattering ; Cylinders ; Series expansion ; Scattering amplitudes
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © Acoustical Society of America, 1993. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 94 (1993): 3454-3462, doi:10.1121/1.407199.
    Beschreibung: Data indicate that certain important types of marine organisms behave acoustically like weakly scattering fluid bodies (i.e., their material properties appear fluidlike and similar to those of the surrounding fluid medium). Use of this boundary condition, along with certain assumptions, allows reduction of what is a very complex scattering problem to a relatively simple, approximate ray-based solution. Because of the diversity of this problem, the formulation is presented in two articles: this first one in which the basic physics of the scattering process is described where the incident sound wave is nearly normally incident upon a single target (i.e., the region in which the scattering amplitude is typically at or near a maximum value for the individual) and the second one [Stanton et al., J. Acoust. Soc. Am. 94, 3463–3472 (1993)] where the formulation is heuristically extended to all angles of incidence and then statistically averaged over a range of angles and target sizes to produce a collective echo involving an aggregation of randomly oriented different sized scatterers. In this article, a simple ray model is employed in the deformed cylinder formulation [Stanton, J. Acoust. Soc. Am. 86, 691–705 (1989)] to describe the scattering by finite length deformed fluid bodies in the general shape of elongated organisms. The work involves single realizations of the length and angle of orientation. Straight and bent finite cylinders and prolate spheroids are treated in separate examples. There is reasonable qualitative comparison between the structure of the data collected by Chu et al. [ICES J. Mar. Sci. 49, 97–106 (1992)] involving two decapod shrimp and this single-target normal-incidence theory. This analysis forms the basis for successful comparison (presented in the companion article) between the extended formulation that is averaged over an ensemble of realizations of length and angle of orientation and scattering data involving aggregations of up to 100's of animals.
    Beschreibung: This work was supported by the U.S. Office of Naval Research Grant No. N00014-89-J-1729 and National Science Foundation Grant No. OCE-8817171.
    Schlagwort(e): Underwater sound
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © Acoustical Society of America, 1998. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 103 (1998): 254-264, doi:10.1121/1.421135.
    Beschreibung: A modeling study was conducted to determine the conditions under which fluidlike zooplankton of the same volume but different shapes (spherical/cylindrical) have similar or dramatically different scattering properties. Models of sound scattering by weakly scattering spheres and cylinders of finite length used in this analysis were either taken from other papers or derived and herein adapted for direct comparison over a range of conditions. The models were examined in the very low- (ka ≪ 1, kL ≪ 1), moderately low- (ka ≪ 1, kL ≳ 1), and high-frequency regions (ka ≫ 1, kL ≫ 1), where k is the acoustic wave number, a is the radius (spherical or cylindrical) of the body, and L is the length of the cylinders (for an elongated body with L/a = 10, "moderately low" corresponds to the range 0.1 ≲ ka ≲ 0.5). Straight and bent cylinder models were evaluated for broadside incidence, end-on incidence, and averages over various distributions of angle of orientation. The results show that for very low frequencies and for certain distributions of orientation angles at high frequencies, the averaged scattering by cylinders will be similar, if not identical, to the scattering by spheres of the same volume. Other orientation distributions of the cylinders at high frequencies produce markedly different results. Furthermore, over a wide range of orientation distributions the scattering by spheres is dramatically different from that of the cylinders in the moderately low-frequency region and in the Rayleigh/geometric transition region: (1) the Rayleigh to geometric scattering turning point occurs at different points for the two cases when the bodies are constrained to have the same volume and (2) the functional dependence of the scattering levels upon the volume of the bodies in the moderately low-frequency region is quite often different between the spheres and cylinders because of the fact that the scattering by the cylinders is still directional in this region. The study demonstrates that there are indeed conditions under which different shaped zooplankton of the same volume will yield similar (ensemble average) scattering levels, but generally the shape and orientation distribution of the elongated bodies must be taken into account for accurate predictions.
    Beschreibung: This work was supported by the U.S. Office of Naval Research Grant No. N00014-95-1-0287 and the National Science Foundation Grant No. OCE-9201264.
    Schlagwort(e): Acoustic wave scattering ; Bioacoustics
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © Acoustical Society of America, 1998. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 103 (1998): 236-253, doi:10.1121/1.421110.
    Beschreibung: Mathematical scattering models are derived and compared with data from zooplankton from several gross anatomical groups—fluidlike, elastic shelled, and gas bearing. The models are based upon the acoustically inferred boundary conditions determined from laboratory backscattering data presented in part I of this series [Stanton et al., J. Acoust. Soc. Am. 103, 225–235 (1998)]. The models use a combination of ray theory, modal-series solution, and distorted wave Born approximation (DWBA). The formulations, which are inherently approximate, are designed to include only the dominant scattering mechanisms as determined from the experiments. The models for the fluidlike animals (euphausiids in this case) ranged from the simplest case involving two rays, which could qualitatively describe the structure of target strength versus frequency for single pings, to the most complex case involving a rough inhomogeneous asymmetrically tapered bent cylinder using the DWBA-based formulation which could predict echo levels over all angles of incidence (including the difficult region of end-on incidence). The model for the elastic shelled body (gastropods in this case) involved development of an analytical model which takes into account irregularities and discontinuities of the shell. The model for gas-bearing animals (siphonophores) is a hybrid model which is composed of the summation of the exact solution to the gas sphere and the approximate DWBA-based formulation for arbitrarily shaped fluidlike bodies. There is also a simplified ray-based model for the siphonophore. The models are applied to data involving single pings, ping-to-ping variability, and echoes averaged over many pings. There is reasonable qualitative agreement between the predictions and single ping data, and reasonable quantitative agreement between the predictions and variability and averages of echo data.
    Beschreibung: This work was supported by the National Science Foundation Grant No. OCE-9201264, the U.S. Office of Naval Research Grant Nos. N00014-89-J-1729, N00014-95-1-0287, and N00014-94-1-0452, and the MIT/WHOI Joint Graduate Education Program.
    Schlagwort(e): Backscatter ; Acoustic wave scattering ; Bioacoustics
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © Acoustical Society of America, 1998. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 103 (1998): 225-235, doi:10.1121/1.421469.
    Beschreibung: The acoustic scattering properties of live individual zooplankton from several gross anatomical groups have been investigated. The groups involve (1) euphausiids (Meganyctiphanes norvegica) whose bodies behave acoustically as a fluid material, (2) gastropods (Limacina retroversa) whose bodies include a hard elastic shell, and (3) siphonophores (Agalma okeni or elegans and Nanomia cara) whose bodies contain a gas inclusion (pneumatophore). The animals were collected from ocean waters off New England (Slope Water, Georges Bank, and the Gulf of Maine). The scattering properties were measured over parts or all of the frequency range 50 kHz to 1 MHz in a laboratory-style pulse-echo setup in a large tank at sea using live fresh specimens. Individual echoes as well as averages and ping-to-ping fluctuations of repeated echoes were studied. The material type of each group is shown to strongly affect both the overall echo level and pattern of the target strength versus frequency plots. In this first article of a two-part series, the dominant scattering mechanisms of the three animal types are determined principally by examining the structure of both the frequency spectra of individual broadband echoes and the compressed pulse (time series) output. Other information is also used involving the effect on overall levels due to (1) animal orientation and (2) tissue in animals having a gas inclusion (siphonophores). The results of this first paper show that (1) the euphausiids behave as weakly scattering fluid bodies and there are major contributions from at least two parts of the body to the echo (the number of contributions depends upon angle of orientation and shape), (2) the gastropods produce echoes from the front interface and possibly from a slow-traveling circumferential (Lamb) wave, and (3) the gas inclusion of the siphonophore dominates the echoes, but the tissue plays a role in the scattering and is especially important when analyzing echoes from individual animals on a ping-by-ping basis. The results of this paper serve as the basis for the development of acoustic scattering models in the companion paper [Stanton et al., J. Acoust. Soc. Am. 103, 236–253 (1998)].
    Beschreibung: This work was supported by the National Science Foundation Grant No. OCE- 9201264, the U.S. Office of Naval Research Grant Nos. N00014-89-J-1729 and N00014-95-1-0287, and the MIT/ WHOI Joint Graduate Education Program.
    Schlagwort(e): Bioacoustics ; Acoustic wave scattering ; Fluctuations
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © Acoustical Society of America, 2000. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 108 (2000): 535-550, doi:10.1121/1.429584.
    Beschreibung: Acoustic backscattering measurements and associated scattering modeling were recently conducted on a type of benthic shelled animal that has a spiral form of shell (Littorina littorea). Benthic and planktonic shelled animals with this shape occur on the seafloor and in the water column, respectively, and can be a significant source of acoustic scattering in the ocean. Modeling of the scattering properties allows reverberation predictions to be made for sonar performance predictions as well as for detection and classification of animals for biological and ecological applications. The studies involved measurements over the frequency range 24 kHz to 1 MHz and all angles of orientation in as small as 1° increments. This substantial data set is quite revealing of the physics of the acoustic scattering by these complex shelled bodies and served as a basis for the modeling. Specifically, the resonance structure of the scattering was strongly dependent upon angle of orientation and could be traced to various types of rays (e.g., subsonic Lamb waves and rays entering the opercular opening). The data are analyzed in both the frequency and time domain (compressed pulse processing) so that dominant scattering mechanisms could be identified. Given the complexity of the animal body (irregular elastic shell with discontinuities), approximate scattering models are used with only the dominant scattering properties retained. Two models are applied to the data, both approximating the body as a deformed sphere: (1) an averaged form of the exact modal-series-based solution for the spherical shell, which is used to estimate the backscattering by a deformed shell averaged over all angles of orientation, and produces reasonably accurate predictions over all k1aesr (k1 is the acoustic wave number of the surrounding water and aesr is the equivalent spherical radius of the body), and (2) a ray-based formula which is used to estimate the scattering at fixed angle of orientation, but only for high k1aesr. The ray-based model is an extension of a model recently developed for the shelled zooplankton Limacina retroversa that has a shape similar to that of the Littorina littorea but swims through the water [Stanton et al., J. Acoust. Soc. Am. 103, 236–253 (1998b)]. Applications of remote detection and classification of the seafloor and water column in the presence of shelled animals are discussed.
    Beschreibung: This work was supported by the U.S. Office of Naval Research Grant Nos. N00014-95-1- 0287 and N00014-96-1-0878, and the MIT/WHOI Joint Graduate Education Program.
    Schlagwort(e): Bioacoustics ; Acoustic wave scattering ; Backscatter ; Reverberation ; Underwater sound
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...