GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The concentrations of DMS and its algal precursor, DMSPp (dimethylsulphoniopropionate), can vary considerably over small spatial scales6, so temporal changes can only be established if measurements are made in the same body of water. As water masses are subject to the influence of currents and ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Aquatic geochemistry 1 (1995), S. 355-374 
    ISSN: 1573-1421
    Keywords: aerosol dissolution ; atmosphere ; rainwater ; seawater ; trace metals ; speciation ; pH cycling ; photochemistry ; particulate load
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Previous work has shown that the type and pH history of an aerosol governs trace metal solubility in rainwater. This study concentrates on the crustal elements Al, Fe and Mn and identifies additional processes which affect dissolution not only in the atmosphere but also on mixing into seawater. Aerosol dissolution experiments (at aerosol concentrations of about 30 mg 1−1) show manganese exhibiting high solubility at the low pH values typical of clouds (54±2.5% at pH 2, with results expressed in mole percent units) with 85% of this increase occurring within 6 hours of acidification. The percentage dissolution decreases to 50% at pH values representative of rainwater (pH 5.5) and to 26±4% at pH 8, typical of seawater. No such dramatic solution phase removal occurs at pH 8 in the presence of inorganic anions (to a final solubility of 44±2%). Thus the extent of manganese dissolution depends strongly on whether aerosols are cycled through acidic environments and on subsequent inorganic complexation once rainwater mixes into sea. Aluminium shows highest dissolution (7.1±0.6%) at low pH with 78% of this increase occurring within 6 hours of acidification. Rapid solution phase removal occurs on increasing the pH to that representative of rainwater (to 0.9±0.4% with 87% of this decrease occurring within 15 min). As a consequence of acid cycling and aluminium's amphoteric nature, solubility is enhanced at seawater pH (2.3±0.3%) over that in rain. Iron shows a strong pH-solubility relationship with highest solubility at low pH (4.7±0.2%), 70% of this value being reached within 6 hours of acidification, and decreasing rapidly to 0.17% as pH is raised to 8. Addition of inorganic anions at pH 8 to simulate mixing into seawater causes a further decrease in solubility, perhaps due to anion induced colloid destabilisation. Photochemical reduction also effects solubility under low pH conditions with Fe(II) comprising 1% of the total iron in the Saharan Aerosol used and 8.4% in an Urban material at a pH of ≈ 2. This element shows rapid solution phase removal with increasing particulate load which is tentatively rationalised in terms of a simple Kd approach.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...