GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    Publication Date: 2024-02-27
    Description: Ocean alkalinity enhancement (OAE) stands as a promising carbon dioxide removal technology. Yet, this solution to climate change entails shifts in water chemistry with unknown consequences for marine fish that are critical to ecosystem health and food security. With a laboratory and mesocosm experiment, we show that early life stages of fish can be resistant to OAE. We examined metabolic rate, swimming behavior, growth and survival in Atlantic herring (Clupea harengus) and other temperate coastal fish species. Neither direct physiological nor indirect food web-mediated impacts of OAE were apparent. This was despite non-CO2-equilibrated OAE (ΔTA = +600 µmol kg-1) that induces strong perturbations (ΔpH = +0.7, pCO2 = 75 µatm) compared to alternative deployment scenarios. Whilst our results give cause for optimism regarding the large-scale application of OAE, other life history stages (embryos) and habitats (open ocean) may prove more vulnerable. Still, our study across ecological scales (organism to community) and exposure times (short- to long-term) suggests that some fish populations, including key fisheries species, may be resilient to the carbonate chemistry changes under OAE.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...