GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-10-27
    Description: Fluids are pervasive in fault zones cutting the Earth's crust; however, the effect of fluid viscosity on fault mechanics is mainly conjectured by theoretical models. We present friction experiments performed on both dry and fluid-permeated silicate and carbonate bearing-rocks, at normal effective stresses up to 20 MPa, with a slip-rate ranging between 10 μm/s and 1 m/s. Four different fluid viscosities were tested. We show that both static and dynamic friction coefficients decrease with viscosity and that dynamic friction depends on the dimensionless Sommerfeld number (S) as predicted by the elastohydrodynamic-lubrication theory (EHD).Under favourable conditions (depending on the fluid viscosity (η), co-seismic slip-rate (V), fault geometry (L/H02) and earthquake nucleation depth (∝σeff)), EHD might be an effective weakening mechanism during natural and induced earthquakes. However, at seismic slip-rate, the slip weakening distance (Dc) increases markedly for a range of fluid viscosities expected in the Earth, potentially favouring slow-slip rather than rupture propagation for small to moderate earthquakes.
    Description: Published
    Description: 1274
    Description: 3T. Sorgente sismica
    Description: 2IT. Laboratori analitici e sperimentali
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-03-09
    Description: One moderate- to large-magnitude earthquake (M 〉 6) nucleates in Earth’s crust every three days on average, but the geological record of ancient fault slip at meters-per-second seismic velocities (as opposed to subseismic slow-slip creep) remains debated because of the lack of established fault-zone evidence of seismic slip. Here we show that the irreversible temperature-dependent transformation of carbonaceous material (CM, a constituent of many fault gouges) into graphite is a reliable tracer of seismic fault slip. We sheared CM-bearing fault rocks in the laboratory at just above subseismic and at seismic velocities under both water-rich and water-deficient conditions and modeled the temperature evolution with slip. By means of micro-Raman spectroscopy and focused-ion beam transmission electron microscopy, we detected graphite grains similar to those found in the principal slip zone of the A.D. 2008 Wenchuan (Mw 7.9) earthquake (southeast Tibet) only in experiments conducted at seismic velocities. The experimental evidence presented here suggests that high-temperature pulses associated with seismic slip induce graphitization of CM. Importantly, the occurrence of graphitized fault-zone CM may allow us to ascertain the seismogenic potential of faults in areas worldwide with incomplete historical earthquake catalogues.
    Description: Published
    Description: 979–982
    Description: 2T. Sorgente Sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-03-09
    Description: Nanoparticles and amorphous materials are common constituents of the shallow sections of active faults. Understanding the conditions at which nanoparticles are produced and their effects on friction can further improve our understanding of fault mechanics and earthquake energy budgets. Here we present the results of 59 rotary shear experiments conducted at room humidity conditions on gouge consisting of mixtures of smectite (Ca-montmorillonite) and quartz. Experiments with 60, 50, 25, 0 wt.% Ca-montmorillonite, were performed to investigate the influence of variable clay content on nanoparticle production and their influence on frictional processes. All experiments were performed at a normal stress of 5 MPa, slip rate of 0.0003 〈 V 〈 1.5 ms-1, and at a displacement of 3 m. To monitor the development of fabric and the mineralogical changes during the experiments, we investigated the deformed gouges using scanning and transmission electron microscopy combined with X-ray powder diffraction quantitative phase analysis. This integrated analytical approach reveals that, at all slip rates and compositions, the nanoparticles (grain size of 10–50 nm) are partly amorphous and result from cataclasis, wear and mechanical solid-state amorphization of smectite. The maximum production of amorphous nanoparticle occurs in the intermediate slip rate range (0.0003 〈 V 〈 0.1 ms-1), at the highest frictional work, and is associated to diffuse deformation and slip strengthening behavior. Instead, the lowest production of amorphous nanoparticles occurs at co-seismic slip rates (V 〉 0.1 ms-1), at the highest frictional power and is associated with strain and heat localization and slip weakening behavior. Our findings suggest that, independently of the amount of smectite nanoparticles, they produce fault weakening only when typical co-seismic slip rates (〉1.3 ms−1) are achieved. This implies that estimates of the fracture surface energy dissipated during earthquakes in natural faults might be extremely difficult to constrain.
    Description: Published
    Description: 221-231
    Description: 2T. Sorgente Sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-05-12
    Description: The 2011 Tōhoku-Oki earthquake revealed that co-seismic displacement along the plate boundary megathrust can propagate to the trench. Co-seismic slip to the trench amplifies hazards at subduction zones, so its historical occurrence should also be investigated globally. Here we combine structural and experimental analyses of core samples taken offshore from southeastern Costa Rica as part of the Integrated Ocean Drilling Program (IODP) Expedition 344, with three-dimensional seismic reflection images of the subduction zone. We document a geologic record of past co-seismic slip to the trench. The core passed through a less than 1.9-million-year-old megathrust frontal ramp that superimposes older Miocene biogenic oozes onto late Miocene–Pleistocene silty clays. This, together with our stratigraphic analyses and geophysical images, constrains the position of the basal decollement to lie within the biogenic oozes. Our friction experiments show that, when wet, silty clays and biogenic oozes are both slip-weakening at sub-seismic and seismic slip velocities. Oozes are stronger than silty clays at slip velocities of less than or equal to 0.01 m s–1, and wet oozes become as weak as silty clays only at a slip velocity of 1 m s–1. We therefore suggest that the geological structures found offshore from Costa Rica were deformed during seismic slip-to-the-trench events. During slower aseismic creep, deformation would have preferentially localized within the silty clays.
    Description: Published
    Description: 935–940
    Description: 2T. Sorgente Sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-05-11
    Description: In subduction zones, seismic slip at shallow crustal depths can lead to the generation of tsunamis. Large slip displacements during tsunamogenic earthquakes are attributed to the low coseismic shear strength of the fluid-saturated and non-lithified clay-rich fault rocks. However, because of experimental challenges in confining these materials, the physical processes responsible for the coseismic reduction in fault shear strength are poorly understood. Using a novel experimental setup, we measured pore fluid pressure during simulated seismic slip in clay-rich materials sampled from the deep oceanic drilling of the Pāpaku thrust (Hikurangi subduction zone, New Zealand). Here, we show that at seismic velocity, shear-induced dilatancy is followed by pressurisation of fluids. The thermal and mechanical pressurisation of fluids, enhanced by the low permeability of the fault, reduces the energy required to propagate earthquake rupture. We suggest that fluid-saturated clay-rich sediments, occurring at shallow depth in subduction zones, can promote earthquake rupture propagation and slip because of their low permeability and tendency to pressurise when sheared at seismic slip velocities.
    Description: Published
    Description: 2481
    Description: 3T. Fisica dei terremoti e Sorgente Sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-10-27
    Description: Frictional behavior of experimental faults during a simulated seismic cycle Elena Spagnuolo (1), Stefan Nielsen (2), Marie Violay (3), Fabio Di Felice (1), Giulio Di Toro (4,5) (1) Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy (elena.spagnuolo@ingv.it), (2) Durham University, Durham, UK (stefan.nielsen@durham.ac.uk), (3) ENAC, LEMR, Lausanne, Switzerland (marie.violay@epfl.ch ), (4) University of Manchester, Manchester, UK (giulio.ditoro@manchester.ac.uk), (5) Università degli Studi di Padova, Padua, Italy Laboratory friction studies of earthquake mechanics aim at understanding complex phenomena either driving or characterizing the seismic cycle. Previous experiments were mainly conducted on bi-axial machines imposing velocity steps conditions, where slip and slip-rate are usually less than 10 mm and 1 mm/s, respectively. However, earthquake nucleation on natural faults results from the combination of the frictional response of fault materials and wall rock stiffness with complex loading conditions. We propose an alternative experimental approach which consists in imposing a step-wise increase in the shear stress on an experimental fault under constant normal stress. This experimental configuration allows us to investigate the relevance of spontaneous fault surface reworking in (1) driving frictional instabilities, (2) promoting the diversity of slip events including the eventual runaway, and (3) ruling weakening and re-strengthening processes during the seismic cycle. Using a rotary shear apparatus (SHIVA, INGV, Rome) with an on-purpose designed control system, the shear stress acting on a simulated fault can be increased step-wise while both slip and slip-rate are allowed to evolve spontaneously (the slip is namely infinite) to accommodate the new state of stress. This unconventional procedure, which we term “shear stress-step loading”, simulates how faults react to either a remote tectonic loading or a sudden seismic or strain event taking place in the vicinity of a fault patch. Our experiments show that the spontaneous slip evolution results in velocity pulses whose shape and occurrence rate are controlled by the lithology and the state of stress. With increasing shear stress and cumulative slip, the experimental fault exhibits three frictional behaviors: (1) stable behavior or individual slip pulses up to few cm/s for few mm of slip in concomitance to the step-wise increase in shear stress; (2) unstable oscillatory slip or continuous slip but with abrupt changes in slip rate (lower than 10 cm/s) under about constant imposed shear stress; (3) fault dramatic weakening or continuous slip with gradually increasingly slip rates up to 6.5 m/s (an imposed upper bound limitation). The shear stress-step loading experimental technique proposed here provides new hints on the behavior of pre-existing faults during the seismic cycle and, for instance, reproduces precursory slip events observed in some large in magnitude earthquakes (e.g., Izmit, Mw 7.6, 1999).
    Description: Published
    Description: Vienna
    Description: 1T. Deformazione crostale attiva
    Keywords: friction ; earthquake mechanics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-05-12
    Description: Seismological, tsunami and geodetic observations have shown that subduction zones are complex systems where the properties of earthquake rupture vary with depth as a result of different pre-stress and frictional conditions. A wealth of earthquakes of different sizes and different source features (e.g. rupture duration) can be generated in subduction zones, including tsunami earthquakes, some of which can produce extreme tsunamigenic events. Here, we offer a geological perspective principally accounting for depth-dependent frictional conditions, while adopting a simplified distribution of on-fault tectonic pre-stress. We combine a lithology-controlled, depth-dependent experimental friction law with 2D elastodynamic rupture simulations for a Tohoku-like subduction zone cross-section. Subduction zone fault rocks are dominantly incohesive and clay-rich near the surface, transitioning to cohesive and more crystalline at depth. By randomly shifting along fault dip the location of the high shear stress regions (“asperities”), moderate to great thrust earthquakes and tsunami earthquakes are produced that are quite consistent with seismological, geodetic, and tsunami observations. As an effect of depth-dependent friction in our model, slip is confined to the high stress asperity at depth; near the surface rupture is impeded by the rock-clay transition constraining slip to the clay-rich layer. However, when the high stress asperity is located in the clay-to-crystalline rock transition, great thrust earthquakes can be generated similar to the Mw 9 Tohoku (2011) earthquake.
    Description: Published
    Description: 155-165
    Description: 2T. Deformazione crostale attiva
    Description: 3T. Sorgente sismica
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-01-25
    Description: Tectonic pseudotachylytes are solidified frictional melts produced on faults during earthquakes and are robust markers of seismic slip events. Nonetheless, pseudotachylytes are apparently uncommon fault rocks, because they are either rarely produced or are easily lost from the geological record. To solve this conundrum, long-lasting (18–35 days) hydrothermal alteration tests were performed on fresh pseudotachylytes produced by sliding solid rock samples at seismic slip rates in the laboratory. After all tests, the pseudotachylytes were heavily altered with dissolution of the matrix and neo-formation of clay aggregates. Post-alteration products closely resemble natural altered pseudotachylytes and associated ultracataclasites (i.e., fault rocks affected by fracturing in the absence of melting), demonstrating that the preservation potential of original pseudotachylyte microstructures is very short, days to months, in the presence of hydrothermal fluids. As a consequence, pseudotachylytes might be significantly underrepresented in the geological record, and on-fault frictional melting during earthquakes is likely to occur more commonly than generally believed
    Description: ERC CoG NOFEAR 614705
    Description: Published
    Description: e2020GL090020
    Description: 3T. Sorgente sismica
    Description: JCR Journal
    Keywords: Fault ; Earthquakes ; Pseudotachylyte ; Earthquake mechanics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-05-11
    Description: The understanding of earthquake physics is hindered by the poor knowledge of fault strength and temperature evolution during seismic slip. Experiments reproducing seismic velocity (∼1 m/s) allow us to measure both the evolution of fault strength and the associated temperature increase due to frictional heating. However, temperature measurements were performed with techniques having insufficient spatial and temporal resolution. Here we conduct high velocity friction experiments on Carrara marble rock samples sheared at 20 MPa normal stress, velocity of 0.3 and 6 m/s, and 20 m of total displacement. We measured the temperature evolution of the fault surface at the acquisition rate of 1 kHz and over a spatial resolution of ∼40 µm with an optical fiber conveying the infrared radiation to a two‐color pyrometer. Temperatures up to 1,250°C and low coseismic fault shear strength are compatible with the activation of grain size dependent viscous creep.
    Description: Published
    Description: e2020GL091856
    Description: 3T. Fisica dei terremoti e Sorgente Sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-10-27
    Description: We present a series of high-velocity friction tests conducted on Westerly granite, using the Slow to HIgh Velocity Apparatus (SHIVA) installed at Istituto Nazionale di Geofisica e Vulcanologia Roma with acoustic emissions (AEs) monitored at high frequency (4 MHz). Both atmospheric humidity and pore fluid (water) pressure conditions were tested, under effective normal stress σeff n in the range 5–20 MPa and at target sliding velocities Vs in the range 0.003–3 m/s. Under atmospheric humidity two consecutive friction drops were observed. The first one is related to flash weakening, and the second one to the formation and growth of a continuous layer of melt in the slip zone. In the presence of fluid, a single drop in friction was observed. Average values of fracture energy are independent of effective normal stress and sliding velocity. However, measurements of elastic wave velocities on the sheared samples suggested that larger damage was induced for 0.1 〈 Vs〈0.3 m/s. This observation is supported by AEs recorded during the test, most of which were detected after the initiation of the second friction drop, once the fault surface temperature was high. Some AEs were detected up to a few seconds after the end of the experiments, indicating thermal rather than mechanical cracking. In addition, the presence of pore water delayed the onset of AEs by cooling effects and by reducing of the heat produced, supporting the link between AEs and the production and diffusion of heat during sliding. Using a thermoelastic crack model developed by Fredrich and Wong (1986), we confirm that damage may be induced by heat diffusion. Indeed, our theoretical results predict accurately the amount of shortening and shortening rate, supporting the idea that gouge production and gouge comminution are in fact largely controlled by thermal cracking. Finally, we discuss the contribution of thermal cracking in the seismic energy balance. In fact, while a dichotomy exists in the literature regarding the partitioning between fracture and heat energy, the experimental evidence reported here suggests that both contribute to fault weakening and off-fault damage. ©2016. American Geophysical Union. All Rights Reserved.
    Description: Published
    Description: 7490–7513
    Description: 4T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: 2IT. Laboratori sperimentali e analitici
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...