GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Publisher
Years
  • 1
    Publication Date: 2018-03-14
    Description: Mn-oxidizing potential of two metal-tolerant bacterial strains – Halomonas meridiana and Marinobacter algicola isolated from the South West Indian Ridge waters were compared at varying concentrations of Mn (II), i.e., 1, 10, and 100 μmol and mmol L −1 . Accompanying changes in their morphology and metabolism were also determined. At concentrations 〉1 mmol L −1 Mn (II), Mn-oxidizing potential of M. algicola was 2–7 times greater than that of H. meridiana . Scanning electron microscopy revealed that exposure to elevated metal content prompted bacterial cells especially those of M. algicola to been enveloped in exopolymeric material and form aggregates. Energy dispersive spectrometric analysis showed that exopolymeric material acts as a nucleation site for Mn deposition and oxide formation which occurs in the form of microspherical aggregates. These features show striking resemblance to biogenically produced Fe-Mn oxide deposits from Lau Basin. Surprisingly, diffractograms of auto-oxidized and bacterially formed Mn-oxide showed similarities to the hydrothermal vein mineral Rhodochrosite indicating that it can also be produced biotically. Elongation of cells by up to 4× the original size and distortion in cell shape were evident at Mn (II) concentrations 〉100 μmol L −1 . Marked differences in C-substrate utilization by the test strains were also observed in presence of Mn (II). A shift in use of substrates that are readily available in oceanic waters like N-acetyl- d -glucosamine to those that can be used under changing redox conditions ( d -cellobiose) or in the presence of metal ions ( d -arabinose, l -asparagine) were observed. These findings highlight the significant role of autochthonous bacteria in transforming reduced metal ions and aiding in the formation of metal oxides. Under natural or laboratory conditions, the mode of bacterially generated Mn-oxide tends to remain the same.
    Print ISSN: 0233-111X
    Electronic ISSN: 1521-4028
    Topics: Biology
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...