GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Electronic Resource
    Electronic Resource
    Oxford BSL : Blackwell Science Ltd
    Molecular microbiology 23 (1997), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: hspR is the distal gene of the Streptomyces albus dnaK operon. It encodes a protein similar to GlnR, the repressor of the Bacillus subtilis glutamine synthetase gene. Transcriptional analysis showed that disruption of hspR led to constitutive high-level expression of the dnaK operon. SDS–PAGE analysis revealed overproduction and accumulation of the chaperone DnaK at low temperature. HSP94, a heat-inducible protein cross-reacting with anti-ClpB antibodies, was also shown to be constitutively overexpressed at low temperature in the hspR mutant. Those features were lost when the mutant was complemented in trans by an intact copy of hspR. The hspR mutant was impaired in its growth on solid rich medium: colonies grow slowly at 30°C. However, formation of aerial mycelium and sporulation was not prevented. In liquid culture growth curves of the mutant and the wild type were similar. The kinetics of groEL gene induction were not modified by the hspR null mutation, indicating that HspR was not directly involved in the control of groEL transcription. Thus, in contrast with B. subtilis and other Gram-positive bacteria, transcription of StreptomycesdnaK and groEL operons is not controlled by the same regulator.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The Bacillus subtilis glpFK operon encoding the glycerol transport facilitator (GlpF) and glycerol kinase (GlpK) is induced by glycerol-3-P and repressed by rapidly metabolizable sugars. Carbon catabolite repression (CCR) of glpFK is partly mediated via a catabolite response element cre preceding glpFK. This operator site is recognized by the catabolite control protein A (CcpA) in complex with one of its co-repressors, P-Ser-HPr or P-Ser-Crh. HPr is a component of the phosphoenolpyruvate:sugar phos-photransferase system (PTS), and Crh is an HPr homologue. The hprK-encoded HPr kinase phosphorylates HPr and Crh at Ser-46. But in neither ccpA nor hprK mutants was expression of a glpF′–lacZ fusion relieved from CCR, as a second, CcpA-independent CCR mechanism implying the terminator tglpFK, whose formation is prevented by the glycerol-3-P-activated antiterminator GlpP, is operative. Deletion of tglpFK led to elevated expression of the glpF′–lacZ fusion and to partial relief from CCR. CCR completely disappeared in ΔtglpFK mutants carrying a disruption of ccpA or hprK. The tglpFK-requiring CCR mechanism seems to be based on insufficient synthesis of glycerol-3-P, as CCR of glpFK was absent in ccpA mutants growing on glycerol-3-P or synthesizing H230R mutant GlpK. In cells growing on glycerol, glucose prevents the phosphorylation of GlpK by P~His-HPr. P~GlpK is much more active than GlpK, and the absence of P~GlpK formation in ΔptsHI strains prevents glycerol metabolism. As a consequence, only small amounts of glycerol-3-P will be formed in glycerol and glucose-exposed cells (inducer exclusion). The uptake of glycerol-3-P via GlpT provides high concentrations of this metabolite in the ccpA mutant and allows the expression of the glpF′–lacZ fusion even when glucose is present. Similarly, despite the presence of glucose, large amounts of glycerol-3-P are formed in a glycerol-exposed strain synthesizing GlpKH230R, as this mutant GlpK is as active as P~GlpK.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Molecular microbiology 12 (1994), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Thermally induced expression of the heat-shock gene groEL is subject to post-transcriptional regulation in Streptomyces albus. When S. albus cells were shifted from 30°C to 41°C, synthesis of three GroEL-like proteins was induced from two genes transcribed from associated promoters P1 and P2. Surprisingly, analyses of transcriptional fusions of these promoters with various reporter genes Indicated constitutive expression independent of heat shock. In contrast, neo expression was thermally inducible as a GroELI-APH translational fusion protein. Furthermore, expression of the groEL1-neo gene was heat Inducible even after the groEL1 promoter region was replaced by a heteroiogous non-heat-inducible promoter such as the Escherichia coli lac promoter. Finally, synthesis of GroE proteins, as well as the GroEL-APH fusion protein, was heat inducible when their transcription was inhibited by rifampicin. Post-transcriptional regulatory signals needed for heat-induced GroEL1 synthesis were mapped within of the groEL 1 structural gene.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 55 (2005), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: In Bacillus subtilis, the NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase (GapB) and the phosphoenolpyruvate carboxykinase (PckA) enzymes are necessary for efficient gluconeogenesis from Krebs cycle intermediates. gapB and pckA transcription is repressed in the presence of glucose but not via CcpA, the major transcriptional regulator for catabolite repression in B. subtilis. A B. subtilis mini-Tn10 transposant library was screened for clones affected in catabolite repression of gapB. Inactivation of a previously unknown gene, yqzB (renamed ccpN for control catabolite protein of gluconeogenic genes), was found to relieve not only gapB but also pckA transcription from catabolite repression. Purified CcpN specifically bound to the gapB and pckA promoters. ccpN is co-transcribed constitutively with another unknown gene, yqfL. A yqfL deletion lowers the level of gapB and pckA transcription threefold under both glycolytic and gluconeogenic conditions and a ccpN deletion is epistatic over a yqfL deletion. YqfL is thus a positive regulator of the expression of gapB and pckA, the effect of which is not influenced by the metabolic regime of the cell but appears to be mediated by CcpN. ccpN has homologues in many Firmicutes, but not all, while yqfL homologues are widely distributed in Eubacteria and also present in some plants. In all analysed bacterial genomes, ccpN and yqfL are physically linked together or to putative gluconeogenic genes. CcpN thus orchestrates a novel CcpA-independent mechanism for catabolite repression of gluconeogenic genes highly conserved in Firmicutes and appears as a functional analogue of FruR in Enterobacteria. The physiological significance of the regulation mediated via the three B. subtilis global transcription regulators, CcpA, CggR and CcpN, is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...