GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-07-21
    Description: Through the release of groundwater, most mountain rivers run year‐round despite their small catchments and sporadic precipitation. This makes mountain ranges important sources of reliable freshwater for downstream populations in many parts of the world. However, due to a lack of ground instrumentation, little is known about groundwater dynamics in mountainous landscapes. Recent research has shown that the amount of moisture trapped in the soil and weathered rocks in the vadose zone can significantly buffer groundwater recharge and runoff but the wider recognition of this effect on major mountain systems has not been yet established. In this study, we test whether the moisture reservoir has an impact on hydrological fluxes in a steep Himalayan catchment during three monsoon seasons. We measured an array of parameters including relative seismic velocity changes from ambient noise correlations. This noninvasive technique allows us to monitor groundwater dynamics in conjunction with classical hydrological measurements. We found that the moisture saturation in the vadose zone controls the onset of groundwater recharge and runoff and therefore determines the annual water availability supplied by monsoon precipitation. We model this dynamic using a surface layer that has a finite storage capacity that controls the connectivity of surface flux to groundwater. The extension of this concept, which is thought to apply widely in flat and undulating landscapes, to steep mountain topography with thin and discontinuous soils underlain by regolith and bedrock has important implications for mountain hydrology.
    Description: Plain Language Summary: The Nepal Himalayas supply essential water resources to a large part of the population of South Asia. Most of this water drains through a mountain groundwater reservoir that is poorly constrained. In steep landscapes, this reservoir is continuously losing water due to gravitational pull. Understanding how the reservoir fills and drains is crucial to the assessment of its sustainability and projection into the future with respect to global climate change. However, the relevant subsurface processes are generally challenging to observe due to limited access to the subsurface, particularly in steep mountain landscapes. We have used seismic ambient noise, ground vibrations continuously recorded by seismometers, to monitor the groundwater dynamics on a spatially integrated scale in a Himalayan valley. We show that the moisture content of a shallow layer controls the transfer of precipitation into the deeper groundwater reservoir during the Indian monsoon seasons. Our study highlights the need to anticipate the effects of changes of land use, soil cover conditions and rainfall regime, due to climate change, to better predict the future of freshwater resources in mountain landscapes.
    Description: Key Points: Passive seismic interferometry reveals detailed insights into subsurface water storage variability in the Nepal Himalayas Vadose zone moisture saturation controls river discharge generation in a steep mountain landscape Freshwater delivery from high mountains is strongly dependent on subsurface conditions, which are rarely considered in these environments
    Description: GFZ HART program
    Keywords: 551.49 ; Himalayas ; mountain hydrology ; seismic noise | subsurface moisture ; summer monsoon ; vadose zone
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-07-04
    Description: We present observations on a new precursory phase of seismic waves scattered in the deep Earth. This phase arrives prior to the PKPab wave at epicentral distances larger than 155°, and we call it PKPab precursor. We show that the presence of the PKPab precursor is a necessary consequence of scattering in D″, which is the commonly accepted cause of the PKPdf precursor at distances smaller than 145°. PKPdf waves that propagate through the inner core should arrive before the PKPab precursor but those, are strongly attenuated in the inner core at frequencies between 4 Hz and 8 Hz used here, making the PKPab precursor the earliest teleseismic signal at distances larger than 155°. Calculated PKPab precursor sensitivity kernel shows that this phase is mostly sensitive to scattering along the closest PKPbc path between source and receiver. It can thus help to constrain the lateral distribution of heterogeneity along D″.
    Description: Plain Language Summary: A new discovered seismic signal recorded far away from earthquakes, by stations on the other side of Earth, will help to study the properties of the core–mantle boundary. We use high frequencies at which seismic waves do not propagate through the Earth's inner core but are instead propagated around it by deflection at heterogeneity located along the core–mantle boundary.
    Description: Key Points: PKP precursor observed at distance beyond 155°. D″ scattering of teleseismic waves at 6 Hz. Radiative transfer simulation used to locate regions of heterogeneity.
    Description: Deutscher Akademischer Austauschdienst (DAAD) http://dx.doi.org/10.13039/501100001655
    Keywords: 551.22 ; CMB ; deep Earth ; PKP precursor ; radiative transfer simulation ; scattering sensitivity ; wave scattering
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-12
    Description: To investigate temporal seismic velocity changes due to earthquake related processes and environmental forcing in Northern Chile, we analyse 8 yr of ambient seismic noise recorded by the Integrated Plate Boundary Observatory Chile (IPOC). By autocorrelating the ambient seismic noise field measured on the vertical components, approximations of the Green’s functions are retrieved and velocity changes are measured with CodaWave Interferometry. At station PATCX, we observe seasonal changes in seismic velocity caused by thermal stress as well as transient velocity reductions in the frequency range of 4–6 Hz. Sudden velocity drops occur at the time of mostly earthquake-induced ground shaking and recover over a variable period of time. We present an empirical model that describes the seismic velocity variations based on continuous observations of the local ground acceleration. The model assumes that not only the shaking of large earthquakes causes velocity drops, but any small vibrations continuously induce minor velocity variations that are immediately compensated by healing in the steady state. We show that the shaking effect is accumulated over time and best described by the integrated envelope of the ground acceleration over the discretization interval of the velocity measurements, which is one day. In our model, the amplitude of the velocity reduction as well as the recovery time are proportional to the size of the excitation. This model with two free scaling parameters fits the data of the shaking induced velocity variation in remarkable detail. Additionally, a linear trend is observed that might be related to a recovery process from one or more earthquakes before our measurement period. A clear relationship between ground shaking and induced velocity reductions is not visible at other stations. We attribute the outstanding sensitivity of PATCX to ground shaking and thermal stress to the special geological setting of the station, where the subsurface material consists of relatively loose conglomerate with high pore volume leading to a stronger nonlinearity compared to the other IPOC stations.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  Earthquake Science
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-12
    Description: Numerous monitoring applications make use of seismic coda waves to evaluate velocity changes in the Earth. This raises the question of the spatial sensitivity of coda wave-based measurements. Here, we investigate the depth sensitivity of coda waves to local velocity perturbations using 2-D numerical wavefield simulations. We calculate the impulse response at the surface before and after a slight perturbation of the velocity within a thin layer at depth is introduced. We perform a parametric analysis of the observed apparent relative velocity changes, εobs, versus the depth of the thin perturbed layer. Through the analysis of the decay of εobs, we can discriminate two different regimes: one for a shallow perturbation and the other for a deep perturbation. We interpret the first regime as the footprint of the 1-D depth sensitivity of the fundamental surface wave mode. To interpret the second regime, we need to model the sensitivity of the multiply scattered body waves in the bulk. We show that the depth sensitivity of coda waves can be modelled as a combination of bulk wave sensitivity and surface wave sensitivity. The transition between these two regimes is governed by mode conversions due to scattering. We indicate the importance of surface waves for the sensitivity of coda waves at shallow depths and at early times in the coda. At later times, bulk waves clearly dominate the depth sensitivity and offer the possibility of monitoring changes at depths below the sensitivity of the surface waves. Based on the transition between the two regimes, we can discriminate a change that occurs at the surface from a change that occurs at depth. This is illustrated for shallow depth perturbations through an example from lunar data.
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-12
    Description: The material properties of earth materials often change after the material has been perturbed (slow dynamics). For example, the seismic velocity of subsurface materials changes after earthquakes, and granular materials compact after being shaken. Such relaxation processes are associated by observables that change logarithmically with time. Since the logarithm diverges for short and long times, the relaxation can, strictly speaking, not have a log-time dependence.We present a self-contained description of a relaxation function that consists of a superposition of decaying exponentials that has log-time behaviour for intermediate times, but converges to zero for long times, and is finite for t = 0. The relaxation function depends on two parameters, the minimum and maximum relaxation time. These parameters can, in principle, be extracted from the observed relaxation. As an example, we present a crude model of a fracture that is closing under an external stress. Although the fracture model violates some of the assumptions on which the relaxation function is based, it follows the relaxation function well. We provide qualitative arguments that the relaxation process, just like the Gutenberg–Richter law, is applicable to a wide range of systems and has universal properties.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-12-14
    Description: The Klyuchevskoy Volcanic Group is a cluster of the world's most active subduction volcanoes, situated on the Kamchatka Peninsula, Russia. The volcanoes lie in an unusual off‐arc position within the Central Kamchatka Depression (CKD), a large sedimentary basin whose origin is not fully understood. Many gaps also remain in the knowledge of the crustal magmatic plumbing system of these volcanoes. We conducted an ambient noise surface wave tomography, to image the 3‐D shear wave velocity structure of the Klyuchevskoy Volcanic Group and CKD within the surrounding region. Vertical component cross correlations of the continuous seismic noise are used to measure interstation Rayleigh wave group and phase traveltimes. We perform a two‐step surface wave tomography to model the 3‐D Vsv velocity structure. For each inversion stage we use a transdimensional Bayesian Monte Carlo approach, with coupled uncertainty propagation. This ensures that our model provides a reliable 3‐D velocity image of the upper 15 km of the crust, as well as a robust assessment of the uncertainty in the observed structure. Beneath the active volcanoes, we image small slow velocity anomalies at depths of 2–5 km but find no evidence for magma storage regions deeper than 5 km—noting the 15 km depth limit of the model. We also map two clearly defined sedimentary layers within the CKD, revealing an extensive 8 km deep sedimentary accumulation. This volume of sediments is consistent with the possibility that the CKD was formed as an Eocene‐Pliocene fore‐arc regime, rather than by recent (〈2 Ma) back‐arc extension.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    GFZ German Research Centre for Geosciences
    In:  Scientific Technical Report STR - Data
    Publication Date: 2021-02-09
    Description: The KISS network was installed in the frame of the “Klyuchevskoy Investigation - Seismic Structure of an extraordinary volcanic system” project and recorded data between summer 2015 and summer 2016 in one of the world’s largest clusters of subduction volcanoes - the Klyuchevskoy volcanic group (KVG). It is located in eastern Russia at the northern end of the Kuril-Kamchatka subduction zone close to its intersection with the Aleutian arc and the north-western termination of Hawaii-Emperor seamount chain. Additional to the 4700m high Mount Klyuchevskoy the KVG contains 12 other volcanoes that have together erupted about 1 cubic meter rock per second averaged over the past 10,000 years. Among those Klyuchevskoy, Bezymianny and Tolbachik were the most active ones during the last decades with eruptions styles ranging from explosive to Hawaiian-type. The KISS experiment is designed to investigate the volcanic and seismic processes and its structural setting in the KVG. The network covers a circular region of about 80km diameter with some linear extensions. It includes data from 77 temporary seismic stations with broadband and short period sensors that were installed on concrete plates in about 60cm deep holes. Due to the local conditions the stations were battery powered and could not be serviced during the experiment. GPS reception of the digitizers was not continuous at all stations due to thick snow cover and vegetation. Waveform data are available from the GEOFON data centre, under network code X9, and are embargoed until end of 2019.
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  Tomography of the Earth’s Crust: From Geophysical Sounding to Real-Time Monitoring | Advanced Technologies in Earth Sciences ; GEOTECHNOLOGIEN Science Report ; No. 21
    Publication Date: 2020-02-12
    Description: The capability of seismic interferometry to create virtual sources atreceiver sites from records of ambient seismic noise is used for seismic monitoringand tomography of different targets.We present hardware developed specificallyfor the needs of seismic data acquisition in the context of monitoring and ambientnoise tomography. Digitizers are capable of continuous recording and real timewireless data transmission in self organizing meshes to allow for robust telemetry indifficult circumstances such as cities or landslides that may cause the loss of stations.A software tool is described that implements required processing and analysis proceduresfor the interferometric processing.We have applied the novel 3Dambient noisesurface wave tomography approach to the Issyk-Ata fault in Kyrgyzstan. It showsthat seismic interferometry can successfully be used for structural investigations onlength scales of only 100 m. The method uses 3D sensitivity kernels for a singlestepinversion of phase velocity dispersion curves for subsurface S-wave velocitystructure and incorporates topography. We recover lateral differences in sedimentvelocities and an offset of the bedrock depth across the fault. Applications of interferometricmonitoring to the geological CO2 storage test site in Ketzin (Germany)and to the Piton de la Fournaise volcano (La Reunion island) emphasize the valueof this approach. At Ketzin site we identify variations of the subsurface velocitiesthat are correlated with changes in the ground water level and mask potential signalsfrom the reservoir depth. At Piton de la Fournaise volcano, seismic velocity changesare linked to volcanic processes as shown by comparison with surface displacementand seismicity that are typically used to characterize volcanic activity.We observe aclear distinction between phases of inflation prior to eruptions and deflation duringperiods of quiescence.
    Type: info:eu-repo/semantics/bookPart
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...