GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    American Geophysical Union (AGU) ; 2015
    In:  Journal of Geophysical Research: Oceans Vol. 120, No. 1 ( 2015-01), p. 94-112
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 120, No. 1 ( 2015-01), p. 94-112
    Kurzfassung: Satellite SSS fields show realistic spatial SSS distribution SST‐dependent bias in the SMOS retrieval Differences to observations can partially be attributed to frontal processes
    Materialart: Online-Ressource
    ISSN: 2169-9275 , 2169-9291
    URL: Issue
    Sprache: Englisch
    Verlag: American Geophysical Union (AGU)
    Publikationsdatum: 2015
    ZDB Id: 2016804-4
    ZDB Id: 161667-5
    ZDB Id: 3094219-6
    SSG: 16,13
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    American Geophysical Union (AGU) ; 2015
    In:  Journal of Geophysical Research: Oceans Vol. 120, No. 6 ( 2015-06), p. 4306-4323
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 120, No. 6 ( 2015-06), p. 4306-4323
    Kurzfassung: Relevance of surface salinity annual cycle studied with in situ and model data Spatial and temporal scales vary regionally influenced by annual cycle Eddy‐resolving simulation additionally shows strong variability below 30 days
    Materialart: Online-Ressource
    ISSN: 2169-9275 , 2169-9291
    URL: Issue
    Sprache: Englisch
    Verlag: American Geophysical Union (AGU)
    Publikationsdatum: 2015
    ZDB Id: 2016804-4
    ZDB Id: 161667-5
    ZDB Id: 3094219-6
    SSG: 16,13
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    In: BMC Infectious Diseases, Springer Science and Business Media LLC, Vol. 20, No. 1 ( 2020-12)
    Kurzfassung: Vibrio spp. are aquatic bacteria that are ubiquitous in warm estuarine and marine environments, of which 12 species are currently known to cause infections in humans. So far, only five human infections with V. harveyi have been reported. Case presentation A 26-year old patient was transferred to our center by inter-hospital air transfer from Mallorca, Spain. Seven days before, he had suffered a complete amputation injury of his left lower leg combined with an open, multi-fragment, distal femur fracture after he had been struck by the propeller of a passing motorboat while snorkeling in the Mediterranean Sea. On admission he was febrile; laboratory studies showed markedly elevated inflammatory parameters and antibiotic treatment with ampicillin/sulbactam was initiated. Physical examination showed a tender and erythematous amputation stump, so surgical revision was performed and confirmed a putrid infection with necrosis of the subcutaneous tissue and the muscles. Tissue cultures subsequently grew V. harveyi with a minimal inhibitory concentration (MIC) of 16 mg/L for ampicillin, and antibiotic treatment was switched to ceftriaxone and ciprofloxacin. Throughout the following days, the patient repeatedly had to undergo surgical debridement but eventually the infection could be controlled, and he was discharged. Conclusions We report the first human infection with V. harveyi acquired in Spain and the second infection acquired in the Mediterranean Sea. This case suggests that physicians and microbiologists should be aware of the possibility of wound infections caused by Vibrio spp. acquired in the ocean environment, especially during hot summer months. Since Vibrio spp. preferentially grow at water temperatures above 18 °C, global warming is responsible for an abundance of these bacteria in coastal waters. This will likely lead to a worldwide increase in reports of Vibrio -associated diseases in the future.
    Materialart: Online-Ressource
    ISSN: 1471-2334
    Sprache: Englisch
    Verlag: Springer Science and Business Media LLC
    Publikationsdatum: 2020
    ZDB Id: 2041550-3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    Springer Science and Business Media LLC ; 2019
    In:  Climate Dynamics Vol. 53, No. 1-2 ( 2019-7), p. 261-274
    In: Climate Dynamics, Springer Science and Business Media LLC, Vol. 53, No. 1-2 ( 2019-7), p. 261-274
    Materialart: Online-Ressource
    ISSN: 0930-7575 , 1432-0894
    Sprache: Englisch
    Verlag: Springer Science and Business Media LLC
    Publikationsdatum: 2019
    ZDB Id: 382992-3
    ZDB Id: 1471747-5
    SSG: 16,13
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Online-Ressource
    Online-Ressource
    Frontiers Media SA ; 2021
    In:  Frontiers in Marine Science Vol. 8 ( 2021-12-24)
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 8 ( 2021-12-24)
    Kurzfassung: High interannual sea surface temperature anomalies of more than 2°C were recorded along the coasts of Angola and Namibia between October 2019 and January 2020. This extreme coastal warm event that has been classified as a Benguela Niño, reached its peak amplitude in November 2019 in the Angola Benguela front region. In contrast to classical Benguela Niños, the 2019 Benguela Niño was generated by a combination of local and remote forcing. In September 2019, a local warming was triggered by positive anomalies of near coastal wind-stress curl leading to downwelling anomalies through Ekman dynamics off Southern Angola and by anomalously weak winds reducing the latent heat loss by the ocean south of 15°S. In addition, downwelling coastal trapped waves were observed along the African coast between mid-October 2019 and early January 2020. Those coastal trapped waves might have partly emanated from the equatorial Atlantic as westerly wind anomalies were observed in the central and eastern equatorial Atlantic between end of September to early December 2019. Additional forcing for the downwelling coastal trapped waves likely resulted from an observed weakening of the prevailing coastal southerly winds along the Angolan coast north of 15°S between October 2019 and mid-February 2020. During the peak of the event, latent heat flux damped the sea surface temperature anomalies mostly in the Angola Benguela front region. In the eastern equatorial Atlantic, relaxation of cross-equatorial southerly winds might have contributed to the equatorial warming in November 2019 during the peak of the 2019 Benguela Niño. Moreover, for the first time, moored velocities off Angola (11°S) revealed a coherent poleward flow in the upper 100 m in October and November 2019 suggesting a contribution of meridional heat advection to the near-surface warming during the early stages of the Benguela Niño. During the Benguela Niño, a reduction of net primary production in the Southern Angola and Angola Benguela front regions was observed.
    Materialart: Online-Ressource
    ISSN: 2296-7745
    Sprache: Unbekannt
    Verlag: Frontiers Media SA
    Publikationsdatum: 2021
    ZDB Id: 2757748-X
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Online-Ressource
    Online-Ressource
    American Geophysical Union (AGU) ; 2015
    In:  Journal of Geophysical Research: Oceans Vol. 120, No. 8 ( 2015-08), p. 5870-5885
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 120, No. 8 ( 2015-08), p. 5870-5885
    Kurzfassung: Satellite salinity fields reveal low salinity pattern in tropical Pacific East Pacific Fresh Pool releases water into the south equatorial Pacific SSS balanced mainly by evaporation, precipitation, and advection
    Materialart: Online-Ressource
    ISSN: 2169-9275 , 2169-9291
    URL: Issue
    Sprache: Englisch
    Verlag: American Geophysical Union (AGU)
    Publikationsdatum: 2015
    ZDB Id: 2016804-4
    ZDB Id: 161667-5
    ZDB Id: 3094219-6
    SSG: 16,13
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    In: Eurosurveillance, European Centre for Disease Control and Prevention (ECDC), Vol. 26, No. 41 ( 2021-10-14)
    Kurzfassung: Vibrio spp. are aquatic bacteria that prefer warm seawater with moderate salinity. In humans, they can cause gastroenteritis, wound infections, and ear infections. During the summers of 2018 and 2019, unprecedented high sea surface temperatures were recorded in the German Baltic Sea. Aim We aimed to describe the clinical course and microbiological characteristics of Vibrio infections in Germany in 2018 and 2019. Methods We performed an observational retrospective multi-centre cohort study of patients diagnosed with domestically-acquired Vibrio infections in Germany in 2018 and 2019. Demographic, clinical, and microbiological data were assessed, and isolates were subjected to whole genome sequencing and antimicrobial susceptibility testing. Results Of the 63 patients with Vibrio infections, most contracted the virus between June and September, primarily in the Baltic Sea: 44 (70%) were male and the median age was 65 years (range: 2–93 years). Thirty-eight patients presented with wound infections, 16 with ear infections, six with gastroenteritis, two with pneumonia (after seawater aspiration) and one with primary septicaemia. The majority of infections were attributed to V. cholerae (non–O1/non-O139) (n = 30; 48%) or V. vulnificus (n = 22; 38%). Phylogenetic analyses of 12 available isolates showed clusters of three identical strains of V. vulnificus , which caused wound infections, suggesting that some clonal lines can spread across the Baltic Sea. Conclusions During the summers of 2018 and 2019, severe heatwaves facilitated increased numbers of Vibrio infections in Germany. Since climate change is likely to favour the proliferation of these bacteria, a further increase in Vibrio -associated diseases is expected.
    Materialart: Online-Ressource
    ISSN: 1560-7917
    Sprache: Englisch
    Verlag: European Centre for Disease Control and Prevention (ECDC)
    Publikationsdatum: 2021
    ZDB Id: 2059112-3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Online-Ressource
    Online-Ressource
    MDPI AG ; 2022
    In:  Remote Sensing Vol. 14, No. 4 ( 2022-02-19), p. 1013-
    In: Remote Sensing, MDPI AG, Vol. 14, No. 4 ( 2022-02-19), p. 1013-
    Kurzfassung: Based on satellite surface salinity (SSS) observations from the SMOS, Aquarius and SMAP missions, we investigate the interannual SSS variability during the period from 2010 to 2020 in the Gulf of Guinea, impacted by the Congo River run-off. Combined with in situ data, the available 11 years of satellite salinity data suggest that the plume of Congo run-off primarily spreads into western directions, leading to reduced SSS. A fraction of it also shows a coastal southward extent subject to interannual variability influenced by coastal trapped waves. The low-salinity water is associated with high values of net primary production, confirming the riverine origin of the nutrient rich plume. No correlation can be found between the plume patterns and the different upwelling strengths in the subsequent upwelling months, nor could a correlation be found with the occurrence of the Benguela Niños. Linking the occurrence of a barrier layer to the occurrence of low-salinity plumes remains difficult, mainly because of the sparseness of in situ data. However, the influence of the low-salinity layer is evident in its stronger stratification and an increased available potential energy.
    Materialart: Online-Ressource
    ISSN: 2072-4292
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2022
    ZDB Id: 2513863-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...